jb69, as Champagne has mentioned there is a JExocet+ pattern in Platinum Blonde. This is an advanced pattern which is described over several posts in the JExocet Compendium thread.
This is the grid after the pattern eliminations have been made
.......12........3..23..4....18....5.6..7.8.......9.....85.....9...4.5..47...6... Platinum Blonde
- Code: Select all
*------------------------------*------------------------------*---------------------*
| 3568 3458 3467:9. | 467.9: 568 4:58 | 79 <1> <2> |
| 1568 1458 467:9. | 12467.9: 12568 124:58 | 79 568 <3> |
| 1:5:6:7†8: 1.5.8.9‡ <2> | <3> 1:5:6:8:9† 1.5.7‡8. | <4> 568 68 |
*------------------------------*------------------------------*---------------------*
| 2.3.7‡ 2:3:4:9† <1> | <8> 236 2:3:4' | 236 7†9‡ <5> |
| 235 <6> 3.4.9‡ | 124: <7> 1234:5 | <8> 2349. 149. |
| 2358 23458 3:4:7† | 124:6 12356 <9> | 1236 23467: 1467: |
*------------------------------*------------------------------*---------------------*
| 1236 123 <8> | <5> 1.2.3.9‡ 1:2:3:7† | 1236 47:9. 47:9. |
| <9> 123 36 | 1.2.7‡ <4> 1238 | <5> 2368 167†8 |
| <4> <7> 5 | 1:2:9† 1238 <6> | 123 238 1.8.9‡ |
*------------------------------*------------------------------*---------------------*
Legend (digit subscripts)
†, ‡ digits equivalent to (7†9‡)r4c8 (they form a conjugate loop)
., : digits that can only be true when 7† and 9‡ are true respectively
'. " digits that must be true when 7† is and 9‡ are true respectively
When (7†)r4c8 is true (4)r5c3 must be true to stop (49)UR:r57c89
When (9‡)r4c8 is true (4)r6c23 must be true to stop (47)UR:r67c89
Therefore (4)r4c2 can never be true nor can (3)r5c3.
In box2, (4) becomes locked in r12c4 together with either (7) or (9) making 126 false in these cells and (6)r6c4 true which significantly reduces the puzzle.
In the write up I actually called the combination of the two Unique Rectangle threats the Platinum Blonde sub-pattern but used a simpler example of it.
DPB