ALS - S - Wing

Advanced methods and approaches for solving Sudoku puzzles

ALS - S - Wing

Postby StrmCkr » Mon Nov 18, 2019 1:59 pm

This is an advancement of the classicSplit - Wing

by expanding the bivalve cell from a size 1 als =>

into an als consisting of N cells holding N+1 digits we can move this technique up to higher power.

simplistic examples: as this technique as an als has way to many examples to nail them all down

formations for the 1 & 3 strong links featured in S-wing thread remains the same.

the eliminations process is a bit more technical:
the linking digits that are visible to the als must see all copies of that digit in the als.

then the eliminations remain the same:
end points of 1 <> 3,
and end points of 3 <> 1

Code: Select all
+-------------+--------------+---------+
| .  .      . | .  (1234)  . | .  .  . |
| .  .      . | .  (1234)  . | .  .  . |
| .  .      . | .  (1234)  . | .  .  . |
+-------------+--------------+---------+
| .  .      . | .  .       . | .  .  . |
| .  -3(1)  . | .  (1)     . | .  .  . |
| .  .      . | .  .       . | .  .  . |
+-------------+--------------+---------+
| .  .      . | .  .       . | .  .  . |
| .  -1(3)  . | .  (3)     . | .  .  . |
| .  .      . | .  .       . | .  .  . |
+-------------+--------------+---------+


this post is created for my own endeavors in programing it into my solver:
Some do, some teach, the rest look it up.
User avatar
StrmCkr
 
Posts: 1163
Joined: 05 September 2006

Re: ALS - S - Wing

Postby SpAce » Mon Nov 18, 2019 3:18 pm

Indeed. You can also have a group complication either with or without the ALS. Here's both:

Code: Select all
+--------------+---------------------+---------+
| .  .       . | .     .           . | .  .  . |
| .  .       . | .     .           . | .  .  . |
| .  .       . | .     .           . | .  .  . |
+--------------+---------------------+---------+
| .  .       . | .     (1234)  (124) | .  .  . |
| .  .       . | .     (1234)  .     | .  .  . |
| /  (1+)-3  / | (1+)  (1+)    (1+). | /  /  / |
+--------------+---------------------+---------+
| .  .       . | .     .           . | .  .  . |
| /  (3+)-1  / | /     (3+)        / | /  /  / |
| .  .       . | .     .           . | .  .  . |
+--------------+---------------------+---------+

Grouped ALS-S-Wing:

(3)r8c2 = r8c5 - (3=241)b5p235 - r6c456 = (1)r6c2 => -3 r6c2, -1 r8c2
--

Btw, here's a recent example of an Almost-S-Wing and an Almost-Grouped-S-Wing (without ALS).
User avatar
SpAce
 
Posts: 2519
Joined: 22 May 2017


Return to Advanced solving techniques