Top1465 #2 (SER 9.5) is one of the 3 puzzles (# 2, SER 9.5 - #3, SER 9.6 - #77, SER 9.8) in the top1465 collection that can be solved neither by nrczt-whips nor by nrczt-braids.
It is not in T&E(ECP+NS+HS), i.e. it is not even solvable by nrczt-braids. But it is in T&E(ECP+NS+HS+BI), i.e. it is solvable by grouped-nrczt-braids (not programmed in SudoRules).
First, let's try SudoRules with the usual rules for nrczt-whips (no braids)
***** SudoRules version 13.7w-bis *****
7.8...3.....2.1...5.........4.....263...8.......1...9..9.6....4....7.5...........
hidden-single-in-a-block ==> r6c9 = 3
interaction row r2 with block b3 for number 8 ==> r3c9 <> 8, r3c8 <> 8, r3c7 <> 8
interaction row r2 with block b3 for number 7 ==> r3c9 <> 7, r3c8 <> 7, r3c7 <> 7
interaction block b6 with column c7 for number 8 ==> r9c7 <> 8, r7c7 <> 8, r2c7 <> 8
interaction block b6 with row r5 for number 5 ==> r5c6 <> 5, r5c4 <> 5, r5c3 <> 5, r5c2 <> 5
hidden-pairs-in-a-row {n7 n8}r3{c4 c6} ==> r3c6 <> 9, r3c6 <> 6, r3c6 <> 4, r3c6 <> 3, r3c4 <> 9, r3c4 <> 4, r3c4 <> 3
interaction block b2 with column c5 for number 3 ==> r9c5 <> 3, r7c5 <> 3, r4c5 <> 3
At this point, the PM is:
- Code: Select all
 *--------------------------------------------------------------------------------------*
 | 7        126      8        | 459      4569     4569     | 3        1456     1259     |
 | 469      36       3469     | 2        34569    1        | 4679     45678    5789     |
 | 5        1236     123469   | 78       3469     78       | 12469    146      129      |
 |----------------------------+----------------------------+----------------------------|
 | 189      4        1579     | 3579     59       3579     | 178      2        6        |
 | 3        1267     12679    | 479      8        24679    | 147      1457     157      |
 | 268      25678    2567     | 1        2456     24567    | 478      9        3        |
 |----------------------------+----------------------------+----------------------------|
 | 128      9        12357    | 6        125      2358     | 127      1378     4        |
 | 12468    12368    12346    | 3489     7        23489    | 5        1368     1289     |
 | 12468    1235678  1234567  | 34589    12459    234589   | 12679    13678    12789    |
 *--------------------------------------------------------------------------------------*
And we now have three short whips:
nrczt-whip-cn[4] n2{r9c1 r6c1} - n2{r6c3 r3c3} - n2{r3c7 r7c7} - {n2r7c5 .} ==> r9c2 <> 2
nrczt-whip-cn[4] n8{r2c9 r2c8} - n5{r2c8 r2c5} - {n5 n9}r4c5 - {n9r4c1 .} ==> r2c9 <> 9
nrczt-whip-rn[6] n7{r9c3 r9c2} - n7{r9c9 r2c9} - n8{r2c9 r2c8} - n5{r2c8 r2c5} - {n5 n9}r4c5 - {n9r5c6 .} ==> r5c3 <> 7
Details for these three whips:
- the first whip is completely built on number 2. It is a champion of z-candidates: it has 2 additional z-candidates in its first cell, 3 in its second cell, 1 in its third cell:
nrczt-whip-cn[4] n2{r9 r6 r7* r8*}c1 - n2{r6 r3 r5#n2r6c1 r7* r8* r9*}c3 - n2{r3 r7 r9*}c7 - n2{r7 . r6#n2r6c1 r9*}c5 ==> r9c2 <> 2
nrczt-whip-cn[4] n8r2{c9 c8} - n5r2{c8 c5 c9*} - {n5 n9}r4c5 - n9{r4 . r2*}c1 ==> r2c9 <> 9
nrczt-whip-rn[6] n7{r9c3 r9c2 r7c3*} - n7{r9 r2 r5*}c9 - n8r2{c9 c8} - n5r2{c8 c5 c9#n7r2c9} - {n5 n9}r4c5 - n9r5{c6 . c3* c4#n9r4c5} ==> r5c3 <> 7
At this point, the PM is:
- Code: Select all
 *--------------------------------------------------------------------------------------*
 | 7        126      8        | 459      4569     4569     | 3        1456     1259     |
 | 469      36       3469     | 2        34569    1        | 4679     45678    578      |
 | 5        1236     123469   | 78       3469     78       | 12469    146      129      |
 |----------------------------+----------------------------+----------------------------|
 | 189      4        1579     | 3579     59       3579     | 178      2        6        |
 | 3        1267     1269     | 479      8        24679    | 147      1457     157      |
 | 268      25678    2567     | 1        2456     24567    | 478      9        3        |
 |----------------------------+----------------------------+----------------------------|
 | 128      9        12357    | 6        125      2358     | 127      1378     4        |
 | 12468    12368    12346    | 3489     7        23489    | 5        1368     1289     |
 | 12468    135678   1234567  | 34589    12459    234589   | 12679    13678    12789    |
 *--------------------------------------------------------------------------------------*
;;; end common part
nrczt-whip-rc[10] n2{r9c1 r6c1} - n2{r6c5 r9c5} - n1{r9c5 r7c5} - {n1 n8}r7c1 - n8{r4c1 r4c7} - n8{r6c7 r6c2} - n5{r6c2 r9c2} - n7{r9c2 r5c2} - n7{r5c9 r6c7} - {n7r7c7 .} ==> r7c3 <> 2
nrczt-whip-bn[21] n5{r6c2 r9c2} - n5{r9c4 r1c4} - n5{r2c5 r7c5} - {n5 n9}r4c5 - n9{r4c1 r2c1} - n9{r2c5 r1c6} - n6{r1c6 r5c6} - n9{r5c6 r5c3} - n2{r5c3 r5c2} - n7{r5c2 r6c2} - {n7 n6}r6c3 - {n6 n8}r6c1 - {n8 n1}r4c1 - {n1 n2}r7c1 - n2{r9c3 r3c3} - n2{r3c7 r9c7} - n9{r9c7 r3c7} - n6{r3c7 r2c7} - {n6 n3}r2c2 - {n3 n4}r2c5 - {n4r2c3 .} ==> r6c6 <> 5
GRID 2 NOT SOLVED. 62 VALUES MISSING.
From this resolution path, one can see that this puzzle has few chains/whips; this is why a very long one is found (relatively) easily.
Now, let's try with nrczt-whips and nrczt-braids together:
***** SudoRules version 13.7wB-bis *****
Unchanged until "end common part".
nrczt-braid-bn[7] n5{r9c2 r6c2} - n8{r6c2 r8c2} - {n8 n2}r7c1 - n7{r6c2 r5c2} - n1{r9c5 r7c5} - {n1 n7}r7c7 - {n7r6c7 .} ==> r9c2 <> 1
nrczt-braid-bn[9] n2{r9c1 r6c1} - n2{r6c5 r9c5} - n1{r9c5 r7c5} - {n1 n8}r7c1 - n8{r9c2 r6c2} - n5{r6c2 r9c2} - n7{r9c2 r5c2} - {n1 n7}r7c7 - {n7r6c7 .} ==> r7c3 <> 2
Unfortunately, I can't go further with the current non optimised implementation of braids in SudoRules, because it leads to memory overflow.
It is already a miracle that a braid of length 9 is found (usually, memory overflow occurs much before this. But this puzzle has few chains and relatively few braids).
These two braids are interesting for two reasons.
Firstly, they are much shorter than those we could get indirectly from a T&E procedure. This illustrates the difference between using T&E and looking for braids.
Secondly, they have few branching points, as shown by the details below:
- the first braid is moderately short and it has two branching points (indicated by ".." instead of "-"):
nrczt-braid-bn[7] n5{r9 r6}c2 - n8{r6 r8}c2 - {n8 n2 n1*}r7c1 .. n7{r6 r5 r9*}c2 .. n1{r9 r7}c5 - {n1 n7 n2#n2r7c1}r7c7 - n7{r6c7 . r45c7#n7r7c7 r5c89#n7r5c2} ==> r9c2 <> 1
- the second braid, although it is longer, has only one branching point, just before the end:
nrczt-braid-bn[9] n2{r9 r6 r7* r8*}c1 - n2{r6 r9 r7*}c5 - n1{r9 r7}c5 - {n1 n8 n2*}r7c1 - n8{r9 r6 r8#n8r7c1}c2 - n5{r6 r9}c2 - n7{r9 r5 r6#n8r6c2}c2 .. {n1 n7 n2*}r7c7 - n7{r6c7 . r45c7#n7r7c7 r5c89#n7r5c2} ==> r7c3 <> 2
The constraint that, in SudoRules, we look for short braids before longer ones is enough to avoid useless branches in the braids that lead to an elimination.
(Unfortunately from the programming POV, it is not enough to avoid many useless partial braids with useless branches).