The simple answer to your question is don't bother trying to solve this puzzle - it's solvable but not by any human friendly methods.
You can reduce the puzzle to this state using reasonably human friendly methods.
- Code: Select all
*--------------------------------------------------------------*
| 1 2786 3 | 46789 5 4678 | 4789 248 24789 |
| 578 5678 69 | 2 489 14678 | 15 3 478 |
| 5789 2578 4 | 789 3 178 | 6 15 2789 |
|--------------------+--------------------+--------------------|
| 24578 9 2578 | 56 248 3 | 148 12468 2468 |
| 6 1 28 | 489 7 48 | 3 2489 5 |
| 3 458 258 | 1 2489 56 | 489 7 24689 |
|--------------------+--------------------+--------------------|
| 45789 4568 1 | 4578 48 4578 | 2 69 3 |
| 2458 3 25678 | 4578 1 9 | 4578 4568 4678 |
| 4578 4578 5789 | 3 6 2 | 45789 458 1 |
*--------------------------------------------------------------*
The next elimination requires some sort of complex Forcing chain - a long sequence of gobbledegook that is virtually meaningless to a human - but proves the elimination.
I checked this with both my solver and Hodoku - I used 10 forcing chain eliminations and Hodoku required 17.
Leren
PS Here is
just a part of Hodoku's solution path - make sure you commit all this to memory
Forcing Chain Verity => r1c2<>6 r6c3=2 r5c3<>2 r5c8=2 r5c8<>9 r7c8=9 r7c8<>6 r7c2=6 r1c2<>6 r6c5=2 r6c5<>9 r2c5=9 r2c3<>9 r2c3=6 r1c2<>6 r6c9=2 r6c9<>6 r6c6=6 r2c6<>6 r1c46=6 r1c2<>6
Forcing Chain Verity => r1c4<>9 r6c3=2 r5c3<>2 r5c8=2 r5c8<>9 r5c4=9 r1c4<>9 r6c5=2 r6c5<>9 r2c5=9 r1c4<>9 r6c9=2 r6c9<>6 r6c6=6 r1c6<>6 r1c4=6 r1c4<>9
Forcing Chain Verity => r7c2<>5 r6c3=2 r5c3<>2 r5c8=2 r5c8<>9 r7c8=9 r7c8<>6 r7c2=6 r7c2<>5 r6c5=2 r6c5<>9 r2c5=9 r2c3<>9 r2c3=6 r2c2<>6 r7c2=6 r7c2<>5 r6c9=2 r6c9<>6 r6c6=6 r6c6<>5 r7c6=5 r7c2<>5
Forcing Net Contradiction in r4c4 => r8c1=2 r8c1<>2 r4c1=2 (r4c1<>5) r4c1<>7 r4c3=7 r4c3<>5 r4c4=5 r8c1<>2 r8c3=2 (r5c3<>2 r5c3=8 r5c6<>8 r5c6=4 r1c6<>4) (r5c3<>2 r5c3=8 r5c6<>8 r5c6=4 r2c6<>4) r8c3<>6 r2c3=6 r2c3<>9 r2c5=9 r2c5<>4 r2c9=4 (r1c7<>4) (r1c8<>4) r1c9<>4 r1c4=4 r1c4<>6 r4c4=6
Forcing Net Verity => r1c8<>4 r2c5=4 (r7c5<>4 r7c5=8 r4c5<>8 r4c5=2 r4c8<>2) r2c5<>9 r6c5=9 r5c4<>9 r5c8=9 r5c8<>2 r1c8=2 r1c8<>4 r2c6=4 (r5c6<>4 r5c6=8 r5c3<>8 r5c3=2 r5c8<>2) r2c6<>1 r2c7=1 r4c7<>1 r4c8=1 r4c8<>2 r1c8=2 r1c8<>4 r2c9=4 r1c8<> 4
Forcing Net Contradiction in r9c8 => r1c9<>2 r1c9=2 (r1c8<>2 r1c8=8 r1c2<>8 r1c2=7 r1c6<>7) r1c9<>9 r6c9=9 (r5c8<>9 r5c4=9 r5c4<>4) r6c9<>6 r6c6=6 r1c6<>6 r1c6=4 r5c6<>4 r5c8=4 r9c8<>4 r1c9=2 (r3c9<>2 r3c2=2 r3c2<>5) r1c9<>9 r6c9=9 r5c8<>9 r5c4=9 r3c4<>9 r3c1=9 r3c1<>5 r3c8=5 r9c8<>5 r1c9=2 r1c8<>2 r1c8=8 r9c8<>8
Forcing Net Contradiction in r3 => r1c9<>8 r1c9=8 r1c9<>9 r6c9=9 r5c8<>9 r5c4=9 r3c4<>9 r3c1=9 r3c1<>5 r1c9=8 r1c8<>8 r1c8=2 r3c9<>2 r3c2=2 r3c2<>5 r1c9=8 r1c9<>9 r6c9=9 (r6c9<>2 r4c9=2 r4c9<>6) r6c9<>6 r6c6=6 r4c4<>6 r4c8=6 r4c8<>1 r3c8=1 r3c8<> 5
Forcing Net Contradiction in c7 => r2c5<>4 r2c5=4 (r1c4<>4) (r1c6<>4) r2c5<>9 r2c3=9 r9c3<>9 r9c7=9 r1c7<>9 r1c9=9 r1c9<>4 r1c7=4 r2c5=4 (r6c5<>4) (r7c5<>4 r7c5=8 r7c2<>8) r2c5<>9 (r6c5=9 r6c5<>2) r2c3=9 r2c3<>6 r2c2=6 r7c2<>6 r7c2=4 (r6c2<>4) r7c2<>6 r7c8=6 r7c8<>9 r5c8=9 r5c8<>2 r5c3=2 r6c3<>2 r6c9=2 r6c9<>4 r6c7=4
Leren