Eioru wrote:A new puzzle with 3 Unique Retangle ( 2xtype1 + 1xtype4 ) and 1 APE more!
- Code: Select all
*-------------------------------------------------------------*
| 34 7 6 | 1 238 2348 | 238 9 5 |
| 5 1 8 | 69 2369 2346 | 7 246 2346 |
| 34 9 2 | 5 368 7 | 1368 1468 3468 |
|------------------+--------------------+---------------------|
| 26 5 3 | 4 6789 68 | 2689 2678 1 |
| 9 4 7 | 2 1368 1368 | 368 5 368 |
| 26 8 1 | 69 3679 5 | 4 267 23679 |
|------------------+--------------------+---------------------|
| 7 26 49 | 8 126 126 | 5 3 49 |
| 1 26 49 | 3 5 26 | 89 478 4789 |
| 8 3 5 | 7 4 9 | 126 126 26 |
*-------------------------------------------------------------*
[r6c9]=3=[r6c5](-3-[r3c5])=7=[r4c5]=9=[r4c7]-9-[r8c7]-8-[r1c7]=
=8=[r1c56]-8-[(r3c5)]-6-[r2c4]=6=[r6c4],
and so r6c9 must be "3" which solves the puzzle.
Another interesting (although useless) deduction in this puzzle is the following:
Suppose that r5c79 are not "6". Then:
-6-[r5c79]-3,8-[r5c56]=3,8|2=[r7c5](-2-[r8c6])-2-[r57c6]-6-[r8c6],
and so r5c7 or r5c9 must be "6".
Carcul