A rather silly fish thermo

For fans of Killer Sudoku, Samurai Sudoku and other variants

A rather silly fish thermo

Postby mith » Wed Oct 14, 2020 8:06 pm

I'm pretty sure that this sort of setup can never produce a unique puzzle without additional constraints (can probably prove it, even, though I haven't fleshed that out yet), but I came up with this silly proof of concept last week for a minimal (and aesthetically pleasing) constraint to make it work.

Code: Select all
..98....7.6..5..4.3....21..7....35...1..6..8...49....25....19...8..4..3...27....6
Thermo constraint: r5c3 is greater than r4c4
Attachments
Swordfish Thermo.png
Swordfish Thermo.png (56.03 KiB) Viewed 805 times
mith
 
Posts: 996
Joined: 14 July 2020

Re: A rather silly fish thermo

Postby denis_berthier » Thu Jan 28, 2021 4:08 am

At the start, the PM is:
Code: Select all
   124       245       9         8         13        46        236       256       7         
   128       6         178       13        5         79        238       4         389       
   3         457       578       46        79        2         1         569       589       
   7         29        68        124       128       3         5         169       149       
   29        1         35        245       6         457       347       8         349       
   68        35        4         9         178       578       367       167       2         
   5         347       367       236       238       1         9         27        48       
   169       8         167       256       4         569       27        3         15       
   149       349       2         7         389       589       48        15        6         

And the thermo constraint amounts to setting r5c3=5 OR r4c4 ≠ 4

First trying to solve with r5c3=5 gives a trivial solution (with Singles):
Code: Select all
459816327
261357849
378492165
726183594
915264783
834975612
543621978
687549231
192738456

Trying to solve with r4c4≠4 also gives a trivial solution (with Singles):
Code: Select all
459816327
261357849
378492165
726183594
915264783
834975612
543621978
687549231
192738456

Miracle: the two solutions are the same.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris


Return to Sudoku variants