.
I think it's worth showing with the previous puzzle how simple the procedure is and how easy it is to track the origin of the high B puzzles:
The starting point is eleven's puzzle in B2B:
- Code: Select all
......7....71.9...86..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5. mins
Its BRT-expand is:
- Code: Select all
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5. MEU
The latter has 57 1-expands, 29 of which are in T&E(1) (the "p1U-d1" puzzles):
- Code: Select all
.2....7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
...4..7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
....5.7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......78...71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7.9..71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7..4.71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7...571.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....7189..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.92.686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9.3686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..6869.7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686.27......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..73.....8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7...5..8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7....2.8.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7.....38.6.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7......856.1.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7......8.641.........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7......8.6.19........2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7......8.6.1.7.......2..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7......8.6.1........52..7...2.64..1.9.6..5.......3.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64.81.9.6..5.......3.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64..179.6..5.......3.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..59......3.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.2.....3.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.....8.3.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5......73.4.3...5.
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.32..5.
......7....71.9..686..7......8.6.1.........2..7...2.64..1.9.6..5.......3.4.3.8.5.
Their B ratings are:
- Code: Select all
3
7
14
6
5
13
16
10
6
11
13
5
19
6
11
4
10
10
14
30
12
12
5
12
20
6
12
15
18
In my approach to expansion of large collections, all this is drowned in millions of puzzles; but I have functions to find the max-value of a rating; then I can easily identify where it happens by using the Finder (file-name contains p1U-d1-B + content contains 30).
Once I have the directory associated to the corresponding solution grid, all is trivial.
In the present case, there is only one minimal puzzle in the collection for this solution.
Walking back from the max value 30, the B30 puzzle is identified as:
- Code: Select all
......7....71.9..686..7......8.6.1.7.......2..7...2.64..1.9.6..5.......3.4.3...5.
It's only difference with the MEU Puzzle above is the additional 7.
.