*-----------*
|...|..1|2..|
|.3.|.24|5..|
|.62|.57|...|
|---+---+---|
|5..|.6.|..7|
|2..|.4.|..8|
|9..|.3.|..1|
|---+---+---|
|...|4..|19.|
|..8|5..|.6.|
|..4|2..|...|
*-----------*
{478} {45789} {579} {3689} {89} {1} {2} {3478} {3469}
{178} {3} {179} {689} {2} {4} {5} {178} {69}
{148} {6} {2} {389} {5} {7} {3489} {1348} {349}
{5} {148} {13} {189} {6} {289} {349} {234} {7}
{2} {17} {1367} {179} {4} {59} {369} {35} {8}
{9} {478} {67} {78} {3} {258} {46} {245} {1}
{367} {257} {3567} {4} {78} {368} {1} {9} {235}
{137} {1279} {8} {5} {179} {39} {347} {6} {234}
{1367} {1579} {4} {2} {1789} {3689} {378} {3578} {35}
FRANKH wrote:I saw the locked pair in box 4 and also row 6, but I still couldn't figure out the next move
FRANKH wrote:"..I see several locked candidates, but I don't see an obvious next move. What is it?"
*-----------------------------------------------------------*
| 478 57 579 | 3689 89 1 | 2 3478 3469 |
| 178 3 179 | 689 2 4 | 5 178 69 |
| 148 6 2 | 389 5 7 | 348 1348 349 |
|-------------------+-------------------+-------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 245 1 |
|-------------------+-------------------+-------------------|
| 367 257 57 | 4 78 368 | 1 9 235 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 1367 1579 4 | 2 179 369 | 378 38 35 |
*-----------------------------------------------------------*
cecbevwr wrote:FRANKH wrote:"..I see several locked candidates, but I don't see an obvious next move. What is it?"
After standard "Locked Candidate" eliminations, I suspect I've reached the same stalemate. My pencilmark grid is this:
- Code: Select all
*-----------------------------------------------------------*
| 478 57 579 | 3689 89 1 | 2 3478 3469 |
| 178 3 179 | 689 2 4 | 5 178 69 |
| 148 6 2 | 389 5 7 | 348 1348 349 |
|-------------------+-------------------+-------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 245 1 |
|-------------------+-------------------+-------------------|
| 367 257 57 | 4 78 368 | 1 9 235 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 1367 1579 4 | 2 179 369 | 378 38 35 |
*-----------------------------------------------------------*
Identifying X-wings continues to baffle me but here goes: For the candidate 9's in rows 8 and 9 does r8c26 and r9c26 identify an X-wing which would then exclude the remaining 9's from r8c5 and r9c5? Help would be welcome.
Cec
*-----------------------*
| . . 9 | 9 9 . | . . 9 |
| . . 9 | 9 . . | . . 9 |
| . . . | 9 . . | . . 9 |
*-----------------------*
| . . . | 9 . 9 | 9 . . |
| . . . | 9 . 9 | 9 . . |
| 9 . . | . . . | . . . |
*-----------------------*
| . . . | . . . | . 9 . |
| . 9 . | . 9 9 | . . . |
| . 9 . | . 9 9 | . . . |
*-----------------------*
*--------------------------------------------------------*
| 478 57 579 | 3689 89 1 | 2 3478 3469 |
| 178 3 179 | 689 2 4 | 5 178 69 |
| 148 6 2 | 389 5 7 | 348 1348 349 |
|------------------+------------------+------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 257 57 | 4 78 368 | 1 9 235 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 1367 1579 4 | 2 179 369 | 378 38 35 |
*--------------------------------------------------------*
Candidates in r7c3 will force r1c2 to have only 5 as valid Candidates
r7c3=5 => r1c3<>5 => r1c2=5
r7c3=7 => (r5c3 <>7 r6c3=6) => r6c7=4 => r6c2=8 => r6c4=7 => r5c4<>7 => r5c2=7 => r1c2=5
Therefore r1c2=5
*--------------------------------------------------------*
| 478 5 79 | 3689 89 1 | 2 3478 3469 |
| 178 3 179 | 689 2 4 | 5 178 69 |
| 148 6 2 | 389 5 7 | 348 1348 349 |
|------------------+------------------+------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 27 5 | 4 78 368 | 1 9 23 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 1367 179 4 | 2 179 369 | 378 38 5 |
*--------------------------------------------------------*
Candidates in r4c8 will force r9c8 to have only 8 as valid Candidates
r4c8=2: r4c8=2 => r6c8=5 => r5c8=3 => r9c8=8
r4c8=3: r4c8=3 => r9c8=8
r4c8=4: r4c8=4 => r6c7=6 => r6c3=7 => r1c3=9 => r1c5=8 => r7c5=7 => r7c2=2 => r7c9=3 => r9c8=8
Threfore r9c8=8
*--------------------------------------------------------*
| 478 5 79 | 3689 89 1 | 2 347 3469 |
| 178 3 179 | 689 2 4 | 5 17 69 |
| 14 6 2 | 39 5 7 | 8 134 349 |
|------------------+------------------+------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 27 5 | 4 78 368 | 1 9 23 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 1367 179 4 | 2 179 369 | 37 8 5 |
*--------------------------------------------------------*
Eliminating 7 From r9c2 (2 & 3 in r7c9 form an XY wing with 7 in r7c2 & r9c7)
Eliminating 7 From r9c1 (2 & 3 in r7c9 form an XY wing with 7 in r7c2 & r9c7)
*--------------------------------------------------------*
| 478 5 79 | 3689 89 1 | 2 347 3469 |
| 178 3 179 | 689 2 4 | 5 17 69 |
| 14 6 2 | 39 5 7 | 8 134 349 |
|------------------+------------------+------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 27 5 | 4 78 368 | 1 9 23 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 136 19 4 | 2 179 369 | 37 8 5 |
*--------------------------------------------------------*
Eliminating 7 From r2c1 (1 & 9 & 7 in r2c3 form an XYZ wing with r2c8 & r1c3)
*--------------------------------------------------------*
| 478 5 79 | 3689 89 1 | 2 347 3469 |
| 18 3 179 | 689 2 4 | 5 17 69 |
| 14 6 2 | 39 5 7 | 8 134 349 |
|------------------+------------------+------------------|
| 5 48 13 | 189 6 289 | 349 234 7 |
| 2 17 1367 | 179 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 27 5 | 4 78 368 | 1 9 23 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 136 19 4 | 2 179 369 | 37 8 5 |
*--------------------------------------------------------*
Candidates in r8c7 will force r4c3 to have only 3 as valid Candidates
r8c7=3: r8c7=3 => r7c9=2 => r7c2=7 => r5c2=1 => r4c3=3
r8c7=4: r8c7=4 => r6c7=6 => r6c3=7 => r5c2=1 => r4c3=3
r8c7=7: r8c7=7 => r9c7=3 => r7c9=2 => r7c2=7 => r5c2=1 => r4c3=3
*--------------------------------------------------------*
| 478 5 79 | 3689 89 1 | 2 347 3469 |
| 18 3 179 | 689 2 4 | 5 17 69 |
| 14 6 2 | 39 5 7 | 8 134 349 |
|------------------+------------------+------------------|
| 5 48 3 | 1 6 289 | 49 24 7 |
| 2 17 167 | 79 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 27 5 | 4 78 368 | 1 9 23 |
| 137 1279 8 | 5 179 39 | 347 6 234 |
| 136 19 4 | 2 179 369 | 37 8 5 |
*--------------------------------------------------------*
Candidates in r8c7 will force r9c2 to have only 9 as valid Candidates
r8c7=3: r8c7=3 => r7c9=2 => r7c2=7 => r5c2=1 => r9c2=9
r8c7=4: r8c7=4 => r6c7=6 => r6c3=7 => r5c2=1 => r9c2=9
r8c7=7: r8c7=7 => r9c7=3 => r7c9=2 => r7c2=7 => r5c2=1 => r9c2=9
Threfore r9c2=9
*--------------------------------------------------------*
| 478 5 79 | 3689 89 1 | 2 347 3469 |
| 18 3 179 | 689 2 4 | 5 17 69 |
| 14 6 2 | 39 5 7 | 8 134 349 |
|------------------+------------------+------------------|
| 5 48 3 | 1 6 289 | 49 24 7 |
| 2 17 167 | 79 4 59 | 369 35 8 |
| 9 48 67 | 78 3 25 | 46 25 1 |
|------------------+------------------+------------------|
| 367 27 5 | 4 78 368 | 1 9 23 |
| 137 127 8 | 5 179 39 | 347 6 234 |
| 136 9 4 | 2 17 36 | 37 8 5 |
*--------------------------------------------------------*
Candidates in r5c3 will force r7c9 to have only 3 as valid Candidates
r5c3=1: r5c3=1 => r5c2=7 => r7c2=2 => r7c9=3
r5c3=6: r5c3=6 => r6c3=7 => r1c3=9 => r1c5=8 => r7c5=7 => r7c2=2 => r7c9=3
r5c3=7: r5c3=7 => r1c3=9 => r1c5=8 => r7c5=7 => r7c2=2 => r7c9=3
Tarek wrote:I'm sure there are other simpler ways, as my solver has yet to implement colouring, Uniqueness, BUG,....
Carcul wrote:BTW Tarek, I am still waiting for your best shot.
Puzzle #4917
. . . | 3 . . | 8 . .
. . . | . 4 6 | . . .
. 1 . | 2 . . | . . 9
-------+-------+------
. 8 6 | . . . | . 7 .
. 9 . | . . . | 2 1 .
. . . | . . 2 | 6 . 3
-------+-------+------
8 . . | . . . | 1 2 .
. . 2 | 7 5 . | 3 . .
. . 7 | . . 1 | . 5 .
Carcul wrote:Tarek wrote:I'm sure there are other simpler ways, as my solver has yet to implement colouring, Uniqueness, BUG,....
Yes, there are other simpler ways. Here is one of them:
[r7c2]=2|9=[r1c3]-9-[r1c5]-8-[r7c5](-7-[r7c2])-7-[r7c3]-5-[r7c2]
(where I have used the AUR in cells r1c23/r7c23) which implies r7c2=2 and that solve the puzzle.
*-----------------------------------------------------------*
| . 57 579 | . 89 . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
|-------------------+-------------------+-------------------|
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
|-------------------+-------------------+-------------------|
| . 257 57 | . 78 . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
*-----------------------------------------------------------*
*-------------------+-------------------+-------------------*
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . 12 | 23 . . | . . . |
|-------------------+-------------------+-------------------|
| . . 13 | 34 . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
|-------------------+-------------------+-------------------|