This one was certainly much tougher than I thought it was going to be and I think nigh on impossible on paper i.e. without a programme to highlight particular candidate numbers and colouring facility. This was how I managed it eventually:
After basic eliminations from locked candidates etc. I got to here:
- Code: Select all
{478} {57} {579} {3689} {89} {1} {2} {3478} {3469}
{178} {3} {179} {689} {2} {4} {5} {178} {69}
{148} {6} {2} {389} {5} {7} {348} {1348} {349}
{5} {48} {13} {189} {6} {289} {349} {234} {7}
{2} {17} {1367} {179} {4} {59} {369} {35} {8}
{9} {48} {67} {78} {3} {25} {46} {25} {1}
{367} {257} {57} {4} {78} {368} {1} {9} {235}
{137} {1279} {8} {5} {179} {39} {347} {6} {234}
{1367} {1579} {4} {2} {179} {369} {378} {38} {35}
Colouring conjugate 4s permits elimination of 4s at r3c7 and r4c7.
Colouring conjugate 5s permits elimination of 5 at r7c2.
Colouring conjugate 8s permits elimination of 8s at r3c4 and r4c4.
Grid now as follows:
- Code: Select all
{478} {57} {579} {3689} {89} {1} {2} {3478} {3469}
{178} {3} {179} {689} {2} {4} {5} {178} {69}
{148} {6} {2} {39} {5} {7} {38} {1348} {349}
{5} {48} {13} {19} {6} {289} {39} {234} {7}
{2} {17} {1367} {179} {4} {59} {369} {35} {8}
{9} {48} {67} {78} {3} {25} {46} {25} {1}
{367} {27} {57} {4} {78} {368} {1} {9} {235}
{137} {1279} {8} {5} {179} {39} {347} {6} {234}
{1367} {1579} {4} {2} {179} {369} {378} {38} {35}
Now there's a triple in row 4, so you can exclude 9 from r4c6 and 3 from r4c8.
An xy-wing (r1c5, r3c4, r3c7) - eliminate 8 from r1c8.
Another xy-wing (r4c7, r5c8, r5c6) - eliminate 9 from r5c7.
Singles in row 4!
Grid now at this point:
- Code: Select all
{478} {57} {579} {3689} {89} {1} {2} {347} {3469}
{178} {3} {179} {689} {2} {4} {5} {178} {69}
{148} {6} {2} {39} {5} {7} {38} {1348} {349}
{5} {48} {3} {1} {6} {28} {9} {24} {7}
{2} {17} {167} {79} {4} {59} {36} {35} {8}
{9} {48} {67} {78} {3} {25} {46} {25} {1}
{367} {27} {57} {4} {78} {368} {1} {9} {235}
{137} {1279} {8} {5} {179} {39} {347} {6} {234}
{1367} {1579} {4} {2} {179} {369} {378} {38} {35}
Colouring conjugate 1s - eliminate 1 from r2c1.
xy-wing (r3c4,7; r1c5) - eliminate 9 from r1c4.
xy-chain (r7c2) -7- (r7c5) -8- (r1c5) -9- (r3c4) -3- (r3c7) -3- (r5c7) -6- (r6c7) -6- (r6c3) -7- (r7c3) -7- (r7c2) Loop is closed thus eliminate 3s in r8,9c7; r3c8,9, eliminate 7s in r7c1; r1,2,5c3.
Colouring conjugate 7s - eliminate 7s from r8,9c1.
Grid is now:
- Code: Select all
{478} {57} {59} {368} {89} {1} {2} {347} {3469}
{78} {3} {19} {689} {2} {4} {5} {178} {69}
{148} {6} {2} {39} {5} {7} {38} {148} {49}
{5} {48} {3} {1} {6} {28} {9} {24} {7}
{2} {17} {16} {79} {4} {59} {36} {35} {8}
{9} {48} {67} {78} {3} {25} {46} {25} {1}
{36} {27} {57} {4} {78} {368} {1} {9} {235}
{13} {1279} {8} {5} {179} {39} {47} {6} {234}
{136} {1579} {4} {2} {179} {369} {78} {38} {35}
Getting there!
Now we have an x-wing of 7s so r1c2 = 5
And the rest is singles.