Yes, right, the idea is to determines ALL implication chains.
Easiest thing to do is clip that into
http://www.stolaf.edu/people/hansonr/sudokuyourself. Just click on "Number block input", paste the table in there,
and press "puzzle".
It wouldn't be able to show all the implications, because it generally
doesn't continue through if it finds an inconsistency. For example, when I
do that and then press "Step" I get:
Strong Chains: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Cross checking
60 cells left to solve; 21 clues; 483 tidbits of information
[snapshot]
Checking block ranges
Checking for subset elimination
Checking for grids
Checking strong chains
17 strong chains
Checking for weak links
44 weak links
139 weak corners
r9c2 ISN'T 9: weak corner eliminated by both 2(b) and 2(B)--4(D)
Chain 2: r1c6#4(b) r1c8#4(B) r2c5#4(B) r2c7#4(b) r5c2#4(B) r9c2#4(b) r4c3#4(b) r8c3#4(B) r4c7#4(B) r5c8#4(b) r8c5#4(b) r9c6#4(B)
Chain 4: r2c1#9(d) r7c1#9(D) r3c2#9(D)
The fact that it went on to the weak link check tells me that the
chains are all OK -- no end-nd problems. But it isn't going to keep
going and check all. I guess you could adjust the code to do that.....
You can check the "chain table" yourself. It looks like this in this case:
- Code: Select all
16 strong chains are labeled A-P, with alternating parity shown using lowercase.
|---c1---|---c2---|---c3--||---c4---|---c5--|---c6--||---c7--|---c8---|---c9---
----------------------------------------------------------------------------------
r1 | 56 | 56 | 2 || 358 | 9 | 348 || 1 | 34568 | 7
| aA | bB | || | | c || | C |
---+--------+--------+-------||--------+-------+-------||-------+--------+--------
r2 | 1579 | 3 | 8 || 6 | 2457 | 124 || 245 | 459 | 259
| e fd | | || | j F | E || l | |
---+--------+--------+-------||--------+-------+-------||-------+--------+--------
r3 | 4 | 15679 | 157 || 123578 | 2578 | 1238 || 2568 | 35689 | 235689
| | D | || | | || | | n
=============================||========================||=========================
r4 | 12367 | 124678 | 1347 || 23789 | 2678 | 5 || 2468 | 146789 | 12689
| | | g || h k | | || L | |
---+--------+--------+-------||--------+-------+-------||-------+--------+--------
r5 | 2567 | 245678 | 9 || 278 | 1 | 268 || 3 | 45678 | 2568
| | i | || | | || | I |
---+--------+--------+-------||--------+-------+-------||-------+--------+--------
r6 | 123567 | 125678 | 1357 || 4 | 2678 | 23689 || 2568 | 156789 | 125689
| | | || | | H K || | |
=============================||========================||=========================
r7 | 123579 | 12579 | 1357 || 12589 | 2568 | 12689 || 568 | 13568 | 4
| D | | || | | || | n |
---+--------+--------+-------||--------+-------+-------||-------+--------+--------
r8 | 135 | 145 | 1345 || 158 | 4568 | 7 || 9 | 2 | 13568
| | | G || | J m | || | | N M
---+--------+--------+-------||--------+-------+-------||-------+--------+--------
r9 | 8 | 12459 | 6 || 1259 | 3 | 1249 || 7 | 15 | 15
| | J | || | | j || | oO | pP
----------------------------------------------------------------------------------
Chain Implication Table
1(a)--> 2(B) row 1
1(A)--> 2(b) row 1
2(b)--> 1(A) row 1
2(B)--> 1(a) row 1
3(c)--> 10(J) block 2
3(C)--> 9(i) col 8 12(L) block 3
4(d)--> 5(E) r2c1 6(F) r2c1
5(e)--> 4(D) r2c1 6(F) r2c1
6(f)--> 4(D) r2c1 5(E) r2c1
6(F)--> 10(J) r2c5
7(g)--> 9(I) block 4 12(l) row 4
7(G)--> 10(j) row 8
8(h)--> 11(K) r4c4
8(H)--> 11(k) r6c6
9(i)--> 7(G) block 4 10(j) col 2
9(I)--> 3(c) col 8 12(l) block 6
10(j)--> 3(C) block 2 6(f) r2c5 12(L) row 2
10(J)--> 7(g) row 8 9(I) col 2 13(M) r8c5
11(k)--> 8(H) r4c4
11(K)--> 8(h) r6c6
12(l)--> 3(c) block 3 10(J) row 2
12(L)--> 7(G) row 4 9(i) block 6
13(m)--> 10(j) r8c5
13(M)--> 14(n) r8c9
14(N)--> 13(m) r8c9
15(o)--> 16(P) row 9
15(O)--> 16(p) row 9
16(p)--> 15(O) row 9
16(P)--> 15(o) row 9
OK, so there are a lot of implications here.
HINT: Use the "load puzzle" link from this pop-up window each time you
want to reset the configuration to this one. Or you can also click the
"snapshot" link that shows up with the information.
If you start disabling things, you might be able to get some different
answers:
** checking +almost-locked sets (Y):
Cross checking
60 cells left to solve; 21 clues; 483 tidbits of information
[snapshot]
Checking block ranges
Checking for subset elimination
59 almost-locked sets (Y)
r8c3 ISN'T 1: weakly linked to two almost-locked sets already weakly linked by 7: r3c3 and r7c3 r8c1 r8c2
** checking X-cycles only:
Strong Chains: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cross checking
60 cells left to solve; 21 clues; 483 tidbits of information
[snapshot]
Checking block ranges
Checking for subset elimination
Checking for grids
Checking strong chains
14 strong chains
Checking for weak links
4 weak links
16 weak corners
r5c1 ISN'T 7: weak corner eliminated by both 6(f) and 6(F)--7(G)
Chain 6: r2c1#7(f) r2c5#7(F)
Chain 7: r3c4#7(g) r5c4#7(G)
(note, these are differerent chains than above)
**Edges only:
(This is just a demo mode that only considers the shortest chains and
misses some due to that.)
Strong Chains: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Cross checking
60 cells left to solve; 21 clues; 483 tidbits of information
[snapshot]
Checking block ranges
Checking for subset elimination
Checking for grids
Checking strong chains
25 strong chains
Checking for weak links
62 weak links
135 weak corners
r1c8 ISN'T 3: weak corner eliminated by both 3(C) and 3(c)--23(w)
Chain 1: r1c1#5(a) r1c1#6(A)
Chain 2: r1c2#5(b) r1c2#6(B)
Chain 3: r1c6#4(c) r1c8#4(C)
Chain 7: r2c5#4(g) r2c7#4(G)
Chain 8: r5c2#4(h) r9c2#4(H)
Chain 9: r2c1#7(i) r2c5#7(I)
Chain 10: r2c8#5(j) r2c8#9(J)
Chain 12: r4c3#4(l) r8c3#4(L)
Chain 13: r4c4#3(m) r4c4#9(M)
Chain 15: r4c7#4(o) r5c8#4(O)
Chain 20: r8c5#4(t) r9c6#4(T)
Chain 21: r8c5#6(u) r8c9#6(U)
Chain 23: r3c9#3(w) r8c9#3(W)
Chain 25: r9c8#5(y) r9c9#5(Y)
(again, a different chain definition)
So there are some, anyway.