WU516

Post puzzles for others to solve here.

WU516

Postby yzfwsf » Tue Sep 27, 2022 1:05 pm

Code: Select all
.....2.1..9.4.....7...5...3.1.8..4....5.7....6.......2.4...1..6...9..83...3....5.

This puzzle was rated as a whip[18] by my solver , is this correct?
yzfwsf
 
Posts: 909
Joined: 16 April 2019

Re: WU516

Postby DEFISE » Wed Sep 28, 2022 8:34 am

Here is my "Simplest first" solution in Whip + subsets of size <= 4 (naked + hidden + super-hidden)
Super-hidden = Xwing, Swordfish, Jellyfish.

Hidden Text: Show
Single(s): 4r3c8
1)
whip[4]: r3n9{c7 c6}- r1n9{c5 c9}- r5n9{c9 c1}- r9n9{c1 .} => -9r6c7
2)
whip[5]: c2n3{r5 r1}- c2n5{r1 r8}- r7n5{c1 c4}- c4n3{r7 r6}- r4n3{c5 .} => -3r5c1
3)
whip[5]: r4n3{c6 c1}- c2n3{r5 r1}- c2n5{r1 r8}- r7n5{c1 c4}- c4n3{r7 .} => -3r5c6
4)
whip[5]: r4n3{c5 c1}- c2n3{r5 r1}- c2n5{r1 r8}- r7n5{c1 c4}- r7n3{c4 .} => -3r6c5
5)
whip[5]: r4n3{c6 c1}- c2n3{r5 r1}- c2n5{r1 r8}- r7n5{c1 c4}- c4n3{r7 .} => -3r6c6
6)
whip[13]: r7n5{c1 c4}- r7n3{c4 c5}- r7n8{c5 c3}- b7n9{r7c3 r9c1}- r4c1{n9 n3}- c2n3{r5 r1}- c2n5{r1 r8}- r8n2{c2 c5}- r9n2{c5 c7}- c4n2{r9 r5}- r5n3{c4 c7}- r5n1{c7 c9}- r9n1{c9 .} => -2r7c1
7)
whip[17]: r3n9{c7 c6}- r1n9{c5 c9}- b9n9{r9c9 r7c8}- c8n2{r7 r2}- r3c7{n2 n6}- r3c4{n6 n1}- c5n1{r2 r6}- c5n9{r6 r4}- b5n2{r4c5 r5c4}- r5n3{c4 c2}- r4c1{n3 n2}- r4c3{n2 n7}- r6c2{n7 n8}- r3n8{c2 c3}- r7c3{n8 n2}- c7n2{r7 r9}- c7n1{r9 .} => -9r5c7
8)
whip[18]: r2n7{c7 c6}- c6n3{r2 r4}- r4n5{c6 c9}- r2c9{n5 n8}- r1c9{n8 n9}- r5c9{n9 n1}- r6c7{n1 n3}- r5c7{n3 n6}- r3c7{n6 n2}- r7c7{n2 n9}- r3n9{c7 c6}- r5c6{n9 n4}- r6c6{n4 n5}- c4n5{r6 r7}- r7c1{n5 n8}- b7n9{r7c1 r9c1}- r4c1{n9 n2}- r5c1{n2 .} => -7r1c7
9)
whip[13]: b2n7{r1c4 r2c6}- c6n3{r2 r4}- c4n3{r5 r7}- r7n5{c4 c1}- c2n5{r8 r1}- r1c7{n5 n9}- r3n9{c7 c6}- c6n8{r3 r9}- r7n8{c5 c3}- r3n8{c3 c2}- r1c3{n8 n4}- c1n4{r1 r5}- c1n8{r5 .} => -6r1c4
10)
whip[8]: r7n3{c5 c4}- r1c4{n3 n7}- r9c4{n7 n6}- r8c5{n6 n4}- r9c5{n4 n8}- r9c6{n8 n7}- r9c2{n7 n2}- r8n2{c2 .} => -2r7c5
11)
whip[16]: b6n5{r4c9 r6c7}- c7n3{r6 r5}- c7n1{r5 r9}- r9n9{c7 c1}- r5n9{c1 c6}- c8n9{r5 r7}- b9n2{r7c8 r7c7}- c7n7{r7 r2}- r1n7{c9 c4}- r7n7{c4 c3}- r4c3{n7 n2}- r5c2{n2 n8}- r5n2{c2 c4}- r9c4{n2 n6}- r9c2{n6 n2}- r3n2{c2 .} => -9r4c9
12)
whip[7]: r4c9{n7 n5}- r2c9{n5 n8}- r1c9{n8 n9}- r1n7{c9 c4}- c6n7{r2 r9}- c6n8{r9 r3}- r3n9{c6 .} => -7r8c9
13)
whip[10]: r8c9{n4 n1}- c9n4{r8 r9}- r9n1{c9 c1}- r9n9{c1 c7}- r3n9{c7 c6}- r1n9{c5 c9}- r1n7{c9 c4}- c6n7{r2 r9}- c6n8{r9 r2}- b3n8{r2c8 .} => -4r8c6
14)
whip[16]: r1n7{c9 c4}- r7n7{c4 c3}- r4n7{c3 c8}- r4c9{n7 n5}- r2c9{n5 n8}- r1c9{n8 n9}- r3n9{c7 c6}- b2n8{r3c6 r1c5}- r7n8{c5 c1}- b7n9{r7c1 r9c1}- r5n9{c1 c8}- c8n6{r5 r2}- c8n8{r2 r6}- c3n8{r6 r3}- r3n1{c3 c4}- b2n6{r3c4 .} => -7r9c9
15)
whip[19]: r4n5{c9 c6}- r6n5{c6 c7}- c7n3{r6 r5}- c7n1{r5 r9}- r8c9{n1 n4}- c9n1{r8 r5}- c9n8{r5 r2}- r2n5{c9 c1}- r7n5{c1 c4}- r7n3{c4 c5}- r4n3{c5 c1}- r6n3{c2 c4}- r6n1{c4 c5}- c5n4{r6 r9}- c5n8{r9 r1}- r1c1{n8 n4}- r5n4{c1 c6}- r6c6{n4 n9}- c5n9{r6 .}
=> -5r1c9

16)
whip[10]: r3n8{c3 c6}- b2n9{r3c6 r1c5}- r1c9{n9 n7}- r1c4{n7 n3}- r7n3{c4 c5}- r7n8{c5 c1}- r7n5{c1 c4}- r6c4{n5 n1}- r6c5{n1 n4}- c3n4{r6 .} => -8r1c3
17)
whip[17]: r3n8{c2 c6}- r3n9{c6 c7}- r1c9{n9 n7}- r1c4{n7 n3}- c6n3{r2 r4}- r2n3{c6 c1}- b1n5{r2c1 r1c1}- c2n5{r1 r8}- c6n5{r8 r6}- c7n5{r6 r2}- b3n2{r2c7 r2c8}- r2n7{c8 c6}- r8n7{c6 c3}- r4n7{c3 c8}- r7c8{n7 n9}- c9n9{r9 r5}- c6n9{r5 .} => -8r1c2
18)
whip[19]: r6n5{c6 c7}- c4n5{r6 r7}- r7n3{c4 c5}- r4n3{c5 c1}- r6n3{c2 c4}- r1c4{n3 n7}- r1n3{c4 c2}- r5n3{c2 c7}- c7n1{r5 r9}- r8c9{n1 n4}- c9n1{r8 r5}- r6n1{c7 c5}- c5n4{r6 r9}- b8n8{r9c5 r9c6}- r9n7{c6 c2}- r6c2{n7 n8}- r5c2{n8 n2}- r5c4{n2 n6}- r9n6{c4 .} => -5r4c6
Single(s): 5r4c9
Box/Line: 7c9b3 => -7r2c7 -7r2c8
19)
whip[10]: b3n9{r1c7 r1c9}- r1n7{c9 c4}- r2n7{c6 c9}- b3n8{r2c9 r2c8}- c8n2{r2 r7}- r7n7{c8 c3}- r4n7{c3 c8}- r6c8{n7 n9}- c3n9{r6 r4}- c5n9{r4 .} => -9r7c7
20)
whip[12]: r7c7{n2 n7}- r7c8{n7 n9}- b9n2{r7c8 r9c7}- r9n9{c7 c1}- r9n1{c1 c9}- r8c9{n1 n4}- r8c5{n4 n6}- r9c4{n6 n7}- r1c4{n7 n3}- r2n3{c5 c1}- r4c1{n3 n2}- r5n2{c1 .} => -2r7c4
21)
whip[13]: r1c4{n7 n3}- r7c4{n3 n5}- r8c6{n5 n6}- r9n6{c6 c2}- r1c2{n6 n5}- b1n3{r1c2 r2c1}- c1n5{r2 r8}- c1n1{r8 r9}- r8n1{c1 c9}- c9n4{r8 r9}- r9n9{c9 c7}- b3n9{r1c7 r1c9}- r1n7{c9 .} => -7r9c4
22)
whip[9]: c5n1{r6 r2}- r3c4{n1 n6}- r9c4{n6 n2}- c5n2{r9 r4}- c5n9{r4 r1}- r3c6{n9 n8}- r3c2{n8 n2}- r5n2{c2 c1}- r5n4{c1 .} => -4r6c5
Box/Line: 4c5b8 => -4r9c6
23)
whip[4]: r1n4{c1 c3}- r6n4{c3 c6}- r6n5{c6 c4}- r7n5{c4 .} => -5r1c1
24)
whip[4]: r1c3{n6 n4}- r6n4{c3 c6}- c6n5{r6 r8}- c2n5{r8 .} => -6r1c2
25)
whip[8]: r9n4{c5 c9}- r8c9{n4 n1}- r9n1{c9 c1}- r9n9{c1 c7}- r3n9{c7 c6}- r1n9{c5 c9}- r1n8{c9 c1}- r3n8{c2 .} => -8r9c5
Naked triplets: 246b8p578 => -6r8c6 -6r9c6
26)
whip[5]: r3n8{c2 c6}- r9c6{n8 n7}- r2n7{c6 c9}- r1c9{n7 n9}- r3n9{c7 .} => -8r1c1
27)
whip[8]: r7n3{c5 c4}- c4n5{r7 r6}- b5n3{r6c4 r4c6}- r2n3{c6 c1}- r1c1{n3 n4}- r5n4{c1 c6}- r6c6{n4 n9}- c5n9{r6 .} => -3r1c5
28)
whip[8]: r1n8{c9 c5}- b2n9{r1c5 r3c6}- r1n9{c5 c7}- r1n6{c7 c3}- c3n4{r1 r6}- r6c6{n4 n5}- r8c6{n5 n7}- r2n7{c6 .} => -7r1c9
Single(s): 7r1c4, 7r2c9
Box/Line: 3r1b1 => -3r2c1
29)
whip[5]: r6n4{c6 c3}- r1n4{c3 c1}- r1n3{c1 c2}- c2n5{r1 r8}- c6n5{r8 .} => -9r6c6
30)
whip[5]: c2n5{r8 r1}- r1n3{c2 c1}- r1n4{c1 c3}- r6n4{c3 c6}- c6n5{r6 .} => -5r8c1
31)
whip[6]: r9n8{c1 c6}- c6n7{r9 r8}- r8n5{c6 c2}- b7n7{r8c2 r9c2}- c2n6{r9 r3}- r3n8{c2 .} => -8r7c3
Naked triplets: 279r7c378 => -9r7c1
32)
whip[4]: r7c1{n8 n5}- r8n5{c2 c6}- r6c6{n5 n4}- r5n4{c6 .} => -8r5c1
33)
whip[6]: r8n7{c2 c6}- r8n5{c6 c2}- r1c2{n5 n3}- r1c1{n3 n4}- r1c3{n4 n6}- c2n6{r3 .} => -7r9c2
34)
whip[4]: r1c9{n8 n9}- c7n9{r1 r9}- r9n7{c7 c6}- c6n8{r9 .} => -8r1c5
Single(s): 8r1c9
Box/Line: 9b3c7 => -9r9c7
35)
whip[3]: r3c4{n1 n6}- r1c5{n6 n9}- r6c5{n9 .} => -1r2c5
Single(s): 1r6c5, 1r3c4
Naked pairs: 35c4r67 => -3r5c4
Xwing in rows: 9r67c38 => -9r4c3 -9r4c8 -9r5c8
36)
whip[3]: r2c8{n2 n6}- r4c8{n6 n7}- r4c3{n7 .} => -2r2c3
37)
whip[3]: r5c9{n1 n9}- r9n9{c9 c1}- r9n1{c1 .} => -1r8c9
Single(s): 4r8c9, 4r9c5
Box/Line: 1r8b7 => -1r9c1
38)
whip[3]: c2n7{r8 r6}- r4c3{n7 n2}- c5n2{r4 .} => -2r8c2
39)
whip[4]: r5n3{c2 c7}- r6c7{n3 n7}- c2n7{r6 r8}- c2n5{r8 .} => -3r1c2
Single(s): 5r1c2, 3r1c1, 4r1c3, 5r2c7, 4r6c6, 4r5c1, 5r6c4, 3r7c4, 8r7c5, 5r7c1, 7r9c6, 5r8c6
Box/Line: 7r8b7 => -7r7c3
40)
whip[3]: r1c7{n6 n9}- r3n9{c7 c6}- r5c6{n9 .} => -6r5c7
Box/Line: 6c7b3 => -6r2c8
Single(s): 2r2c8
41)
whip[2]: c1n2{r8 r4}- c5n2{r4 .} => -2r8c3
42)
whip[3]: r7c3{n2 n9}- r7c8{n9 n7}- r4n7{c8 .} => -2r4c3
Single(s): 7r4c3, 6r4c8, 8r5c8, 7r8c2
Xwing in rows: 2r48c15 => -2r9c1
43)
whip[2]: r2n6{c5 c3}- r8n6{c3 .} => -6r1c5
Single(s): 9r1c5, 6r1c7, 9r3c7
44)
whip[3]: r9c1{n8 n9}- c3n9{r7 r6}- c3n8{r6 .} => -8r2c1
STTE


Length max = 19
Run time = 168 s

N.B: That doesn't mean any of us made a mistake:
1) I don't eliminate loops in whips.
2) Only the Braid-rating is absolute.
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: WU516

Postby denis_berthier » Wed Sep 28, 2022 11:28 am

.
Here is SudoRules solution in W19.

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 3458  3568  468   ! 367   3689  2     ! 5679  1     5789  !
   ! 12358 9     1268  ! 4     1368  3678  ! 2567  2678  578   !
   ! 7     268   1268  ! 16    5     689   ! 269   4     3     !
   +-------------------+-------------------+-------------------+
   ! 239   1     279   ! 8     2369  3569  ! 4     679   579   !
   ! 23489 238   5     ! 1236  7     3469  ! 1369  689   189   !
   ! 6     378   4789  ! 135   1349  3459  ! 13579 789   2     !
   +-------------------+-------------------+-------------------+
   ! 2589  4     2789  ! 2357  238   1     ! 279   279   6     !
   ! 125   2567  1267  ! 9     246   4567  ! 8     3     147   !
   ! 1289  2678  3     ! 267   2468  4678  ! 1279  5     1479  !
   +-------------------+-------------------+-------------------+
210 candidates.


Hidden Text: Show
z-chain[4]: b3n9{r3c7 r1c9} - c5n9{r1 r4} - c3n9{r4 r7} - c8n9{r7 .} ==> r6c7≠9
z-chain[5]: c7n3{r6 r5} - c2n3{r5 r1} - c2n5{r1 r8} - r7n5{c1 c4} - r7n3{c4 .} ==> r6c5≠3
whip[5]: c7n3{r5 r6} - c2n3{r6 r1} - c2n5{r1 r8} - r7n5{c1 c4} - c4n3{r7 .} ==> r5c1≠3
whip[5]: c7n3{r5 r6} - c2n3{r6 r1} - c2n5{r1 r8} - r7n5{c1 c4} - c4n3{r7 .} ==> r5c6≠3
whip[5]: c7n3{r6 r5} - c2n3{r5 r1} - c2n5{r1 r8} - r7n5{c1 c4} - c4n3{r7 .} ==> r6c6≠3
whip[13]: r7n5{c1 c4} - r7n3{c4 c5} - r7n8{c5 c3} - b7n9{r7c3 r9c1} - r4c1{n9 n3} - c2n3{r6 r1} - c2n5{r1 r8} - r8n2{c2 c5} - c4n2{r9 r5} - r5n3{c4 c7} - r5n1{c7 c9} - c7n1{r6 r9} - r9n2{c7 .} ==> r7c1≠2
whip[17]: b3n9{r3c7 r1c9} - b9n9{r9c9 r7c8} - c8n2{r7 r2} - r3c7{n2 n6} - r3c4{n6 n1} - c5n1{r2 r6} - c5n9{r6 r4} - b5n2{r4c5 r5c4} - r5n3{c4 c2} - r4c1{n3 n2} - r4c3{n2 n7} - r6c2{n7 n8} - r3c2{n8 n2} - r3c3{n2 n8} - r7c3{n8 n2} - c7n2{r7 r9} - c7n1{r9 .} ==> r5c7≠9
whip[18]: r2n7{c9 c6} - c6n3{r2 r4} - r4n5{c6 c9} - r2c9{n5 n8} - r1c9{n8 n9} - r5c9{n9 n1} - r6c7{n1 n3} - r5c7{n3 n6} - c7n1{r5 r9} - c7n9{r9 r7} - r3n9{c7 c6} - r5c6{n9 n4} - c1n4{r5 r1} - r1n5{c1 c2} - b1n3{r1c2 r2c1} - c1n1{r2 r8} - r8n5{c1 c6} - r6c6{n5 .} ==> r1c7≠7
whip[13]: b2n7{r1c4 r2c6} - c6n3{r2 r4} - c4n3{r5 r7} - r7n5{c4 c1} - c2n5{r8 r1} - r1c7{n5 n9} - b2n9{r1c5 r3c6} - c6n8{r3 r9} - b7n8{r9c1 r7c3} - r3n8{c3 c2} - b4n8{r5c2 r5c1} - b4n4{r5c1 r6c3} - r1c3{n4 .} ==> r1c4≠6
whip[8]: r7n3{c5 c4} - r1c4{n3 n7} - r9c4{n7 n6} - r8c5{n6 n4} - r9c5{n4 n8} - r9c6{n8 n7} - r9c2{n7 n2} - b9n2{r9c7 .} ==> r7c5≠2
whip[16]: b6n5{r4c9 r6c7} - c7n3{r6 r5} - c7n1{r5 r9} - r9n9{c7 c1} - r5n9{c1 c6} - c8n9{r5 r7} - b9n2{r7c8 r7c7} - c7n7{r7 r2} - b2n7{r2c6 r1c4} - r7n7{c4 c3} - r4c3{n7 n2} - r3n2{c3 c2} - r5n2{c2 c4} - r9c4{n2 n6} - r9c2{n6 n8} - r5c2{n8 .} ==> r4c9≠9
whip[7]: r4c9{n7 n5} - r2c9{n5 n8} - r1c9{n8 n9} - b2n9{r1c5 r3c6} - c6n8{r3 r9} - c6n7{r9 r2} - b3n7{r2c7 .} ==> r8c9≠7
whip[10]: r9n4{c6 c9} - r8c9{n4 n1} - b7n1{r8c1 r9c1} - r9n9{c1 c7} - r3n9{c7 c6} - r1n9{c5 c9} - r1n7{c9 c4} - b8n7{r7c4 r9c6} - c6n8{r9 r2} - b3n8{r2c8 .} ==> r8c6≠4
whip[16]: r1n7{c9 c4} - r7n7{c4 c3} - r4n7{c3 c8} - r4c9{n7 n5} - r2c9{n5 n8} - r1c9{n8 n9} - b2n9{r1c5 r3c6} - b2n8{r3c6 r1c5} - r7n8{c5 c1} - b7n9{r7c1 r9c1} - r5n9{c1 c8} - c8n6{r5 r2} - b2n6{r2c5 r3c4} - r3n1{c4 c3} - c3n8{r3 r6} - r6c8{n8 .} ==> r9c9≠7
whip[19]: r4n5{c9 c6} - c4n5{r6 r7} - r7n3{c4 c5} - r4n3{c5 c1} - r6n3{c2 c4} - r5n3{c4 c7} - c7n1{r5 r9} - r8c9{n1 n4} - r9c9{n4 n9} - c9n1{r9 r5} - b5n1{r5c4 r6c5} - c5n4{r6 r9} - b8n8{r9c5 r9c6} - r9c1{n8 n2} - c4n2{r9 r5} - r5c2{n2 n8} - r6c2{n8 n7} - r9n7{c2 c4} - r1c4{n7 .} ==> r6c7≠5
hidden-single-in-a-block ==> r4c9=5
whip[1]: c9n7{r2 .} ==> r2c7≠7, r2c8≠7
whip[10]: r3n8{c3 c6} - b2n9{r3c6 r1c5} - r1c9{n9 n7} - r1c4{n7 n3} - r7n3{c4 c5} - r7n8{c5 c1} - r7n5{c1 c4} - r6c4{n5 n1} - r6c5{n1 n4} - c3n4{r6 .} ==> r1c3≠8
whip[10]: b3n9{r3c7 r1c9} - r1n7{c9 c4} - r2n7{c6 c9} - b3n8{r2c9 r2c8} - c8n2{r2 r7} - r7n7{c8 c3} - b4n7{r4c3 r6c2} - r6c8{n7 n9} - c5n9{r6 r4} - c3n9{r4 .} ==> r7c7≠9
whip[12]: r7c7{n2 n7} - r7c8{n7 n9} - b9n2{r7c8 r9c7} - r9n9{c7 c1} - r9n1{c1 c9} - c9n4{r9 r8} - r8c5{n4 n6} - c5n2{r8 r4} - r4c1{n2 n3} - c6n3{r4 r2} - b2n7{r2c6 r1c4} - r9c4{n7 .} ==> r7c4≠2
whip[14]: r2c9{n8 n7} - r1c9{n7 n9} - b2n9{r1c5 r3c6} - c6n8{r3 r9} - c6n7{r9 r8} - c6n5{r8 r6} - c6n4{r6 r5} - b4n4{r5c1 r6c3} - r1c3{n4 n6} - r1c7{n6 n5} - c2n5{r1 r8} - c2n6{r8 r9} - c2n7{r9 r6} - r6n8{c2 .} ==> r2c8≠8
whip[1]: c8n8{r6 .} ==> r5c9≠8
hidden-pairs-in-a-column: c9{n7 n8}{r1 r2} ==> r1c9≠9
whip[1]: b3n9{r3c7 .} ==> r9c7≠9
z-chain[3]: r8n1{c3 c9} - r5c9{n1 n9} - r9n9{c9 .} ==> r9c1≠1
whip[1]: r9n1{c9 .} ==> r8c9≠1
naked-single ==> r8c9=4
whip[5]: r8c5{n6 n2} - r9c4{n2 n7} - r1c4{n7 n3} - r7c4{n3 n5} - r8c6{n5 .} ==> r9c5≠6
whip[5]: r8c5{n6 n2} - r9c4{n2 n7} - r1c4{n7 n3} - r7c4{n3 n5} - r8c6{n5 .} ==> r9c6≠6
whip[5]: r8c5{n2 n6} - r9c4{n6 n7} - r1c4{n7 n3} - r7c4{n3 n5} - r8c6{n5 .} ==> r9c5≠2
whip[6]: b8n2{r8c5 r9c4} - r5n2{c4 c1} - b4n4{r5c1 r6c3} - r1c3{n4 n6} - r3c2{n6 n8} - b4n8{r5c2 .} ==> r8c2≠2
t-whip[9]: r3n2{c3 c7} - r3n9{c7 c6} - r1n9{c5 c7} - c7n5{r1 r2} - c7n6{r2 r5} - r5c6{n6 n4} - c1n4{r5 r1} - r1n5{c1 c2} - b1n3{r1c2 .} ==> r2c1≠2
whip[9]: r8n1{c1 c3} - r3n1{c3 c4} - b5n1{r5c4 r6c5} - r2n1{c5 c1} - b1n5{r2c1 r1c2} - b1n3{r1c2 r1c1} - r1n4{c1 c3} - r6n4{c3 c6} - c6n5{r6 .} ==> r8c1≠5
whip[9]: r3n9{c7 c6} - r1n9{c5 c7} - c7n5{r1 r2} - c7n6{r2 r5} - r5c6{n6 n4} - r6c6{n4 n5} - b8n5{r8c6 r7c4} - c1n5{r7 r1} - c1n4{r1 .} ==> r3c7≠2
whip[1]: r3n2{c3 .} ==> r2c3≠2
biv-chain[4]: c5n1{r6 r2} - r3c4{n1 n6} - r3c7{n6 n9} - b2n9{r3c6 r1c5} ==> r6c5≠9
z-chain[5]: r3n1{c4 c3} - b1n2{r3c3 r3c2} - r5n2{c2 c1} - b4n4{r5c1 r6c3} - r6c5{n4 .} ==> r5c4≠1
whip[1]: r5n1{c9 .} ==> r6c7≠1
whip[8]: r1c4{n3 n7} - r7c4{n7 n5} - r6c4{n5 n1} - r3n1{c4 c3} - b1n2{r3c3 r3c2} - r5n2{c2 c1} - b4n4{r5c1 r6c3} - r6c5{n4 .} ==> r5c4≠3
t-whip[6]: r8n7{c3 c6} - b8n5{r8c6 r7c4} - c4n7{r7 r1} - c4n3{r1 r6} - r6c7{n3 n7} - c2n7{r6 .} ==> r7c3≠7
t-whip[7]: r2n5{c7 c1} - r7n5{c1 c4} - r7n3{c4 c5} - r2n3{c5 c6} - c4n3{r1 r6} - r6c7{n3 n7} - r7c7{n7 .} ==> r2c7≠2
hidden-single-in-a-block ==> r2c8=2
whip[1]: c8n6{r5 .} ==> r5c7≠6
z-chain[5]: c4n2{r9 r5} - b4n2{r5c2 r4c3} - r4n7{c3 c8} - r7c8{n7 n9} - r9n9{c9 .} ==> r9c1≠2
finned-x-wing-in-columns: n2{c5 c1}{r8 r4} ==> r4c3≠2
z-chain[4]: r9c1{n9 n8} - r7c3{n8 n2} - r7c7{n2 n7} - r7c8{n7 .} ==> r7c1≠9
z-chain[5]: r6c7{n7 n3} - r6c2{n3 n8} - r6c8{n8 n9} - r7n9{c8 c3} - r4c3{n9 .} ==> r6c3≠7
biv-chain[6]: r5n3{c2 c7} - r5n1{c7 c9} - r9c9{n1 n9} - r9c1{n9 n8} - r7c1{n8 n5} - c2n5{r8 r1} ==> r1c2≠3
whip[1]: c2n3{r6 .} ==> r4c1≠3
whip[1]: r4n3{c6 .} ==> r6c4≠3
biv-chain[3]: b2n7{r2c6 r1c4} - c4n3{r1 r7} - b8n5{r7c4 r8c6} ==> r8c6≠7
whip[1]: r8n7{c3 .} ==> r9c2≠7
biv-chain[3]: c2n5{r1 r8} - r8c6{n5 n6} - r9n6{c4 c2} ==> r1c2≠6
biv-chain[3]: r7n5{c1 c4} - c4n3{r7 r1} - b1n3{r1c1 r2c1} ==> r2c1≠5
hidden-single-in-a-row ==> r2c7=5
z-chain[3]: r2c9{n8 n7} - c6n7{r2 r9} - c6n8{r9 .} ==> r2c5≠8
biv-chain[5]: b5n2{r5c4 r4c5} - c5n9{r4 r1} - r1c7{n9 n6} - r1c3{n6 n4} - b4n4{r6c3 r5c1} ==> r5c1≠2
x-wing-in-columns: n2{c1 c5}{r4 r8} ==> r8c3≠2
t-whip[5]: b7n7{r8c2 r8c3} - r4c3{n7 n9} - r7n9{c3 c8} - r6n9{c8 c6} - c6n5{r6 .} ==> r8c2≠5
hidden-single-in-a-block ==> r7c1=5
hidden-single-in-a-block ==> r1c2=5
hidden-single-in-a-block ==> r8c6=5
hidden-single-in-a-block ==> r6c4=5
hidden-single-in-a-block ==> r6c5=1
hidden-single-in-a-block ==> r3c4=1
hidden-single-in-a-column ==> r9c5=4
naked-pairs-in-a-column: c4{r1 r7}{n3 n7} ==> r9c4≠7
biv-chain[4]: c9n8{r1 r2} - r2n7{c9 c6} - r9c6{n7 n8} - c5n8{r7 r1} ==> r1c1≠8
biv-chain[4]: r1c1{n3 n4} - b4n4{r5c1 r6c3} - r6c6{n4 n9} - b2n9{r3c6 r1c5} ==> r1c5≠3
biv-chain[4]: r1c7{n6 n9} - r3n9{c7 c6} - r6c6{n9 n4} - c3n4{r6 r1} ==> r1c3≠6
naked-single ==> r1c3=4
naked-single ==> r1c1=3
naked-single ==> r1c4=7
naked-single ==> r1c9=8
naked-single ==> r2c9=7
naked-single ==> r7c4=3
naked-single ==> r7c5=8
naked-single ==> r9c6=7
hidden-single-in-a-column ==> r5c1=4
hidden-single-in-a-block ==> r6c6=4
x-wing-in-rows: n9{r6 r7}{c3 c8} ==> r5c8≠9, r4c8≠9, r4c3≠9
naked-single ==> r4c3=7
naked-single ==> r4c8=6
naked-single ==> r5c8=8
hidden-single-in-a-column ==> r8c2=7
finned-x-wing-in-rows: n6{r8 r2}{c3 c5} ==> r1c5≠6
naked-single ==> r1c5=9
naked-single ==> r1c7=6
naked-single ==> r3c7=9
biv-chain[3]: c1n8{r2 r9} - b7n9{r9c1 r7c3} - c3n2{r7 r3} ==> r3c3≠8
biv-chain[3]: r3c3{n2 n6} - r8n6{c3 c5} - r8n2{c5 c1} ==> r7c3≠2
stte

At the start, the path is the same as François,, but they diverge. SudoRules as only one whip[19].

I wouldn't say the w rating is not absolute. It IS. More properly said: it is an intrinsic property of a puzzle, same as the B rating.
What is not fully guarantee with whips is, the simplest-first strategy (or any strategy exploring a single solution path) is not guarantee to find the W rating.
As I explained ling ago in [CRT] or [PBCS], together with precise examples, the reason is, whips don't have the confluence property. They are "not far from having it", but they don't have it. (Not far means that problems show up very rarely).
In the present case, the W rating may well be 19 in spite of yzfsfw solution, depending on whether inner loops are allowed or not. IN my standard approach, they are not.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: WU516

Postby yzfwsf » Wed Sep 28, 2022 12:36 pm

If I do not activate g-whips, then the solution path is as follows:
Hidden Text: Show
Hidden Single: 4 in c8 => r3c8=4
Whip[4]: Supposing 9r6c7 would causes 9 to disappear in Box 3 => r6c7<>9
9r6c7 - 9r3(c7=c6) - 9r5(c6=c1) - 9r9(c1=c9) - 9b3(p3=.)
Whip[5]: Supposing 3r5c1 would causes 3 to disappear in Column 4 => r5c1<>3
3r5c1 - 3c7(r5=r6) - 3c2(r6=r1) - 5c2(r1=r8) - 5r7(c1=c4) - 3c4(r7=.)
Whip[5]: Supposing 3r5c6 would causes 3 to disappear in Column 4 => r5c6<>3
3r5c6 - 3r4(c5=c1) - 3c2(r6=r1) - 5c2(r1=r8) - 5r7(c1=c4) - 3c4(r7=.)
Whip[5]: Supposing 3r6c5 would causes 3 to disappear in Row 4 => r6c5<>3
3r6c5 - 3r7(c5=c4) - 5r7(c4=c1) - 5c2(r8=r1) - 3r1(c2=c1) - 3r4(c1=.)
Whip[5]: Supposing 3r6c6 would causes 3 to disappear in Column 4 => r6c6<>3
3r6c6 - 3r4(c5=c1) - 3c2(r5=r1) - 5c2(r1=r8) - 5r7(c1=c4) - 3c4(r7=.)
Whip[13]: Supposing 2r7c1 would causes 2 to disappear in Box 9 => r7c1<>2
2r7c1 - 5r7(c1=c4) - 3r7(c4=c5) - 8r7(c5=c3) - 9b7(p3=p7) - r4c1(9=3) - 3c2(r6=r1) - 5c2(r1=r8) - 2r8(c2=c5) - 2c4(r9=r5) - 3r5(c4=c7) - 1r5(c7=c9) - 1c7(r6=r9) - 2b9(p7=.)
Whip[17]: Supposing 9r5c7 would causes 1 to disappear in Column 7 => r5c7<>9
9r5c7 - 9r3(c7=c6) - 9r1(c5=c9) - 9b9(p9=p2) - 2c8(r7=r2) - r3c7(2=6) - r3c4(6=1) - 1c5(r2=r6) - 9b5(p8=p2) - 2b5(p2=p4) - 3r5(c4=c2) - r4c1(3=2) - r4c3(2=7) - r6c2(7=8) - 8r3(c2=c3) - r7c3(8=2) - 2b9(p1=p7) - 1c7(r9=.)
Whip[18]: Supposing 7r1c7 will result in all candidates in cell r5c1 being impossible => r1c7<>7
7r1c7 - 7r2(c9=c6) - 3c6(r2=r4) - 5r4(c6=c9) - r2c9(5=8) - r1c9(8=9) - r5c9(9=1) - r6c7(1=3) - r5c7(3=6) - r3c7(6=2) - r7c7(2=9) - 9r3(c7=c6) - r5c6(9=4) - r6c6(4=5) - 5c4(r6=r7) - r7c1(5=8) - 9b7(p1=p7) - r4c1(9=2) - r5c1(2=.)
Whip[13]: Supposing 6r1c4 would causes 8 to disappear in Box 4 => r1c4<>6
6r1c4 - 7b2(p1=p6) - 3c6(r2=r4) - 3c4(r6=r7) - 5r7(c4=c1) - 5c2(r8=r1) - r1c7(5=9) - 9r3(c7=c6) - 8c6(r3=r9) - 8r7(c5=c3) - 8r3(c3=c2) - r1c3(8=4) - 4c1(r1=r5) - 8b4(p4=.)
Whip[8]: Supposing 2r7c5 would causes 2 to disappear in Box 9 => r7c5<>2
2r7c5 - 3r7(c5=c4) - r1c4(3=7) - r9c4(7=6) - r8c5(6=4) - r9c5(4=8) - r9c6(8=7) - r9c2(7=2) - 2b9(p7=.)
Whip[16]: Supposing 9r4c9 would causes 2 to disappear in Box 5 => r4c9<>9
9r4c9 - 5b6(p3=p7) - 3c7(r6=r5) - 1c7(r5=r9) - 9r9(c7=c1) - 9r5(c1=c6) - 9c8(r5=r7) - 2b9(p2=p1) - 7c7(r7=r2) - 7r1(c9=c4) - 7r7(c4=c3) - r4c3(7=2) - 2r3(c3=c2) - r5c2(2=8) - r9c2(8=6) - r9c4(6=2) - 2b5(p4=.)
Whip[7]: Supposing 7r8c9 would causes 7 to disappear in Box 3 => r8c9<>7
7r8c9 - r4c9(7=5) - r2c9(5=8) - r1c9(8=9) - 9r3(c7=c6) - 8c6(r3=r9) - 7c6(r9=r2) - 7b3(p5=.)
Whip[10]: Supposing 4r8c6 would causes 8 to disappear in Box 3 => r8c6<>4
4r8c6 - 4r9(c5=c9) - r8c9(4=1) - 1r9(c7=c1) - 9r9(c1=c7) - 9r3(c7=c6) - 9r1(c5=c9) - 7r1(c9=c4) - 7c6(r2=r9) - 8c6(r9=r2) - 8b3(p6=.)
Whip[16]: Supposing 7r9c9 would causes 6 to disappear in Box 2 => r9c9<>7
7r9c9 - 7r1(c9=c4) - 7r7(c4=c3) - 7r4(c3=c8) - r4c9(7=5) - r2c9(5=8) - r1c9(8=9) - 9r3(c7=c6) - 8b2(p9=p2) - 8r7(c5=c1) - 9b7(p1=p7) - 9r5(c1=c8) - 6c8(r5=r2) - 8c8(r2=r6) - 8c3(r6=r3) - 1r3(c3=c4) - 6b2(p7=.)
Whip[19]: Supposing 5r1c9 would causes 9 to disappear in Box 2 => r1c9<>5
5r1c9 - 5r4(c9=c6) - 5r6(c4=c7) - 3c7(r6=r5) - 1b6(p4=p6) - 8c9(r5=r2) - 5r2(c9=c1) - 5r7(c1=c4) - 3r7(c4=c5) - 3r4(c5=c1) - 3r6(c2=c4) - 1b5(p7=p8) - 1c7(r6=r9) - r8c9(1=4) - 4c5(r8=r9) - 8c5(r9=r1) - r1c1(8=4) - 4r5(c1=c6) - r6c6(4=9) - 9b2(p9=.)
Whip[10]: Supposing 8r1c3 would causes 4 to disappear in Column 3 => r1c3<>8
8r1c3 - 8r3(c2=c6) - 9b2(p9=p2) - r1c9(9=7) - r1c4(7=3) - 3r7(c4=c5) - 8r7(c5=c1) - 5r7(c1=c4) - r6c4(5=1) - r6c5(1=4) - 4c3(r6=.)
Whip[19]: Supposing 5r6c7 will result in all candidates in cell r1c4 being impossible => r6c7<>5
5r6c7 - 5r4(c9=c6) - 5c4(r6=r7) - 3r7(c4=c5) - 3r4(c5=c1) - 3r6(c2=c4) - 3r5(c4=c7) - 1c7(r5=r9) - r8c9(1=4) - r9c9(4=9) - 1c9(r9=r5) - 1r6(c7=c5) - 4c5(r6=r9) - 8b8(p8=p9) - r9c1(8=2) - 2c4(r9=r5) - r5c2(2=8) - r6c2(8=7) - 7r9(c2=c4) - r1c4(7=.)
Hidden Single: 5 in b6 => r4c9=5
Locked Candidates 2 (Claiming): 7 in c9 => r2c7<>7,r2c8<>7
Whip[10]: Supposing 9r7c7 would causes 9 to disappear in Column 5 => r7c7<>9
9r7c7 - 9b3(p7=p3) - 7r1(c9=c4) - 7r2(c6=c9) - 8b3(p6=p5) - 2c8(r2=r7) - 7r7(c8=c3) - 7r4(c3=c8) - r6c8(7=9) - 9c3(r6=r4) - 9c5(r4=.)
Whip[12]: Supposing 2r7c4 would causes 2 to disappear in Box 5 => r7c4<>2
2r7c4 - r7c7(2=7) - r7c8(7=9) - 2b9(p2=p7) - 9r9(c7=c1) - 1r9(c1=c9) - r8c9(1=4) - r8c5(4=6) - r9c4(6=7) - r1c4(7=3) - 3r2(c6=c1) - r4c1(3=2) - 2b5(p2=.)
Whip[14]: Supposing 8r2c8 would causes 9 to disappear in Column 7 => r2c8<>8
8r2c8 - r2c9(8=7) - r1c9(7=9) - 9r3(c7=c6) - 8c6(r3=r9) - 7c6(r9=r8) - 5c6(r8=r6) - 4c6(r6=r5) - 4r6(c5=c3) - r1c3(4=6) - r1c7(6=5) - 5c2(r1=r8) - 6b7(p5=p8) - 7r9(c2=c7) - 9c7(r9=.)
Locked Candidates 2 (Claiming): 8 in c8 => r5c9<>8
Hidden Pair: 78 in r1c9,r2c9 => r1c9<>9
Locked Candidates 1 (Pointing): 9 in b3 => r9c7<>9
Whip[3]: Supposing 1r8c9 would causes 1 to disappear in Box 7 => r8c9<>1
1r8c9 - r5c9(1=9) - 9r9(c9=c1) - 1b7(p7=.)
Naked Single: r8c9=4
Locked Candidates 2 (Claiming): 1 in r8 => r9c1<>1
Whip[5]: Supposing 2r9c5 will result in all candidates in cell r8c6 being impossible => r9c5<>2
2r9c5 - r8c5(2=6) - r9c4(6=7) - r1c4(7=3) - r7c4(3=5) - r8c6(5=.)
Whip[5]: Supposing 6r9c5 will result in all candidates in cell r8c6 being impossible => r9c5<>6
6r9c5 - r8c5(6=2) - r9c4(2=7) - r1c4(7=3) - r7c4(3=5) - r8c6(5=.)
Whip[5]: Supposing 6r9c6 will result in all candidates in cell r8c6 being impossible => r9c6<>6
6r9c6 - r8c5(6=2) - r9c4(2=7) - r1c4(7=3) - r7c4(3=5) - r8c6(5=.)
Whip[6]: Supposing 2r8c2 would causes 8 to disappear in Box 4 => r8c2<>2
2r8c2 - 2c5(r8=r4) - 2r5(c4=c1) - 4b4(p4=p9) - r1c3(4=6) - r3c2(6=8) - 8b4(p8=.)
Whip[9]: Supposing 2r2c1 would causes 5 to disappear in Box 1 => r2c1<>2
2r2c1 - r2c8(2=6) - 6c7(r3=r5) - r2c7(6=5) - r1c7(5=9) - 9r3(c7=c6) - r5c6(9=4) - 4c1(r5=r1) - 3b1(p1=p2) - 5b1(p2=.)
Whip[11]: Supposing 2r3c7 will result in all candidates in cell r6c6 being impossible => r3c7<>2
2r3c7 - 9r3(c7=c6) - 9r1(c5=c7) - 5c7(r1=r2) - 6c7(r2=r5) - r5c6(6=4) - 4c1(r5=r1) - 5b1(p1=p2) - 3b1(p2=p4) - 1c1(r2=r8) - 5r8(c1=c6) - r6c6(5=.)
Locked Candidates 1 (Pointing): 2 in b3 => r2c3<>2
Whip[4]: Supposing 9r6c5 would causes 1 to disappear in Box 5 => r6c5<>9
9r6c5 - 9r1(c5=c7) - r3c7(9=6) - r3c4(6=1) - 1b5(p7=.)
Whip[5]: Supposing 1r5c4 would causes 1 to disappear in Row 3 => r5c4<>1
1r5c4 - r6c5(1=4) - 4r5(c6=c1) - 2r5(c1=c2) - 2r3(c2=c3) - 1r3(c3=.)
Locked Candidates 2 (Claiming): 1 in r5 => r6c7<>1
Whip[8]: Supposing 3r5c4 would causes 1 to disappear in Row 3 => r5c4<>3
3r5c4 - r1c4(3=7) - r7c4(7=5) - r6c4(5=1) - r6c5(1=4) - 4r5(c6=c1) - 2r5(c1=c2) - 2r3(c2=c3) - 1r3(c3=.)
Whip[6]: Supposing 7r7c3 would causes 3 to disappear in Column 4 => r7c3<>7
7r7c3 - 7r8(c2=c6) - 5b8(p6=p1) - 7c4(r7=r1) - 7r9(c4=c7) - r6c7(7=3) - 3c4(r6=.)
Whip[7]: Supposing 3r1c2 will result in all candidates in cell r3c2 being impossible => r1c2<>3
3r1c2 - 3r5(c2=c7) - r6c7(3=7) - r6c2(7=8) - r5c2(8=2) - r5c4(2=6) - 6r9(c4=c2) - r3c2(6=.)
Locked Candidates 1 (Pointing): 3 in b1 => r4c1<>3
Locked Candidates 2 (Claiming): 3 in r4 => r6c4<>3
Whip[3]: Supposing 5r2c1 would causes 3 to disappear in Box 1 => r2c1<>5
5r2c1 - 5r7(c1=c4) - 3c4(r7=r1) - 3b1(p1=.)
Hidden Single: 5 in r2 => r2c7=5
Hidden Single: 2 in r2 => r2c8=2
Locked Candidates 1 (Pointing): 6 in b3 => r5c7<>6
Whip[3]: Supposing 7r8c6 would causes 5 to disappear in Box 8 => r8c6<>7
7r8c6 - 7c4(r9=r1) - 3c4(r1=r7) - 5b8(p1=.)
Locked Candidates 2 (Claiming): 7 in r8 => r9c2<>7
Whip[3]: Supposing 6r1c2 would causes 5 to disappear in Column 2 => r1c2<>6
6r1c2 - 6r9(c2=c4) - r8c6(6=5) - 5c2(r8=.)
Whip[3]: Supposing 8r2c5 would causes 8 to disappear in Box 8 => r2c5<>8
8r2c5 - r2c9(8=7) - 7c6(r2=r9) - 8b8(p9=.)
Whip[4]: Supposing 2r4c3 would causes 7 to disappear in Row 4 => r4c3<>2
2r4c3 - r4c1(2=9) - 9r9(c1=c9) - r7c8(9=7) - 7r4(c8=.)
Whip[2]: Supposing 2r9c1 would causes 2 to disappear in Box 8 => r9c1<>2
2r9c1 - 2r4(c1=c5) - 2b8(p5=.)
Whip[4]: Supposing 9r7c1 will result in all candidates in cell r9c1 being impossible => r7c1<>9
9r7c1 - r7c8(9=7) - r7c7(7=2) - r7c3(2=8) - r9c1(8=.)
Whip[4]: Supposing 5r8c1 would causes 1 to disappear in Box 7 => r8c1<>5
5r8c1 - 5r7(c1=c4) - r6c4(5=1) - 1r3(c4=c3) - 1b7(p6=.)
Whip[5]: Supposing 2r5c1 would causes 4 to disappear in Column 1 => r5c1<>2
2r5c1 - r4c1(2=9) - 9c5(r4=r1) - r1c7(9=6) - r1c3(6=4) - 4c1(r1=.)
X-Wing:2c15\r48 => r8c3<>2
Whip[5]: Supposing 8r5c1 would causes 9 to disappear in Box 4 => r5c1<>8
8r5c1 - 4b4(p4=p9) - r1c3(4=6) - r1c7(6=9) - 9c5(r1=r4) - 9b4(p3=.)
Whip[4]: Supposing 7r4c8 would causes 6 to disappear in Box 6 => r4c8<>7
7r4c8 - r6c7(7=3) - 3r5(c7=c2) - 8r5(c2=c8) - 6b6(p5=.)
Hidden Single: 7 in r4 => r4c3=7
Hidden Single: 7 in r8 => r8c2=7
Hidden Single: 5 in r8 => r8c6=5
Hidden Single: 5 in r6 => r6c4=5
Hidden Single: 1 in r6 => r6c5=1
Hidden Single: 5 in r7 => r7c1=5
Hidden Single: 5 in r1 => r1c2=5
Hidden Single: 1 in c4 => r3c4=1
Hidden Single: 4 in c5 => r9c5=4
Naked Pair: in r1c4,r7c4 => r9c4<>7,
Whip[2]: Supposing 6r1c5 would causes 6 to disappear in Row 2 => r1c5<>6
6r1c5 - 6r8(c5=c3) - 6r2(c3=.)
Whip[3]: Supposing 8r1c5 would causes 8 to disappear in Box 4 => r1c5<>8
8r1c5 - 8r7(c5=c3) - 8r3(c3=c2) - 8b4(p8=.)
Hidden Single: 8 in c5 => r7c5=8
Hidden Single: 3 in r7 => r7c4=3
Hidden Single: 7 in c4 => r1c4=7
Hidden Single: 7 in r2 => r2c9=7
Hidden Single: 7 in c6 => r9c6=7
Hidden Single: 8 in c9 => r1c9=8
Whip[3]: Supposing 8r2c1 would causes 8 to disappear in Column 3 => r2c1<>8
8r2c1 - r9c1(8=9) - 9c3(r7=r6) - 8c3(r6=.)
Hidden Single: 8 in c1 => r9c1=8
Hidden Single: 9 in r9 => r9c9=9
Full House: r5c9=1
Hidden Single: 9 in r7 => r7c3=9
Hidden Single: 2 in r7 => r7c7=2
Full House: r7c8=7
Full House: r9c7=1
Hidden Single: 7 in r6 => r6c7=7
Hidden Single: 3 in r6 => r6c2=3
Hidden Single: 3 in r5 => r5c7=3
Hidden Single: 2 in c3 => r3c3=2
Whip[3]: Supposing 6r1c3 will result in all candidates in cell r3c2 being impossible => r1c3<>6
6r1c3 - r8c3(6=1) - r2c3(1=8) - r3c2(8=.)
stte
yzfwsf
 
Posts: 909
Joined: 16 April 2019

Re: WU516

Postby denis_berthier » Wed Sep 28, 2022 1:08 pm

If you had g-whips activated in your first post, that was not the W rating, but the gW.
So, you also find 19 for W.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: WU516

Postby yzfwsf » Wed Sep 28, 2022 1:20 pm

denis_berthier wrote:If you had g-whips activated in your first post, that was not the W rating, but the gW.
So, you also find 19 for W.

Yes, i only report the longest chain.
yzfwsf
 
Posts: 909
Joined: 16 April 2019


Return to Puzzles

cron