.
Here is SudoRules solution in W19.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 3458 3568 468 ! 367 3689 2 ! 5679 1 5789 !
! 12358 9 1268 ! 4 1368 3678 ! 2567 2678 578 !
! 7 268 1268 ! 16 5 689 ! 269 4 3 !
+-------------------+-------------------+-------------------+
! 239 1 279 ! 8 2369 3569 ! 4 679 579 !
! 23489 238 5 ! 1236 7 3469 ! 1369 689 189 !
! 6 378 4789 ! 135 1349 3459 ! 13579 789 2 !
+-------------------+-------------------+-------------------+
! 2589 4 2789 ! 2357 238 1 ! 279 279 6 !
! 125 2567 1267 ! 9 246 4567 ! 8 3 147 !
! 1289 2678 3 ! 267 2468 4678 ! 1279 5 1479 !
+-------------------+-------------------+-------------------+
210 candidates.
z-chain[4]: b3n9{r3c7 r1c9} - c5n9{r1 r4} - c3n9{r4 r7} - c8n9{r7 .} ==> r6c7≠9
z-chain[5]: c7n3{r6 r5} - c2n3{r5 r1} - c2n5{r1 r8} - r7n5{c1 c4} - r7n3{c4 .} ==> r6c5≠3
whip[5]: c7n3{r5 r6} - c2n3{r6 r1} - c2n5{r1 r8} - r7n5{c1 c4} - c4n3{r7 .} ==> r5c1≠3
whip[5]: c7n3{r5 r6} - c2n3{r6 r1} - c2n5{r1 r8} - r7n5{c1 c4} - c4n3{r7 .} ==> r5c6≠3
whip[5]: c7n3{r6 r5} - c2n3{r5 r1} - c2n5{r1 r8} - r7n5{c1 c4} - c4n3{r7 .} ==> r6c6≠3
whip[13]: r7n5{c1 c4} - r7n3{c4 c5} - r7n8{c5 c3} - b7n9{r7c3 r9c1} - r4c1{n9 n3} - c2n3{r6 r1} - c2n5{r1 r8} - r8n2{c2 c5} - c4n2{r9 r5} - r5n3{c4 c7} - r5n1{c7 c9} - c7n1{r6 r9} - r9n2{c7 .} ==> r7c1≠2
whip[17]: b3n9{r3c7 r1c9} - b9n9{r9c9 r7c8} - c8n2{r7 r2} - r3c7{n2 n6} - r3c4{n6 n1} - c5n1{r2 r6} - c5n9{r6 r4} - b5n2{r4c5 r5c4} - r5n3{c4 c2} - r4c1{n3 n2} - r4c3{n2 n7} - r6c2{n7 n8} - r3c2{n8 n2} - r3c3{n2 n8} - r7c3{n8 n2} - c7n2{r7 r9} - c7n1{r9 .} ==> r5c7≠9
whip[18]: r2n7{c9 c6} - c6n3{r2 r4} - r4n5{c6 c9} - r2c9{n5 n8} - r1c9{n8 n9} - r5c9{n9 n1} - r6c7{n1 n3} - r5c7{n3 n6} - c7n1{r5 r9} - c7n9{r9 r7} - r3n9{c7 c6} - r5c6{n9 n4} - c1n4{r5 r1} - r1n5{c1 c2} - b1n3{r1c2 r2c1} - c1n1{r2 r8} - r8n5{c1 c6} - r6c6{n5 .} ==> r1c7≠7
whip[13]: b2n7{r1c4 r2c6} - c6n3{r2 r4} - c4n3{r5 r7} - r7n5{c4 c1} - c2n5{r8 r1} - r1c7{n5 n9} - b2n9{r1c5 r3c6} - c6n8{r3 r9} - b7n8{r9c1 r7c3} - r3n8{c3 c2} - b4n8{r5c2 r5c1} - b4n4{r5c1 r6c3} - r1c3{n4 .} ==> r1c4≠6
whip[8]: r7n3{c5 c4} - r1c4{n3 n7} - r9c4{n7 n6} - r8c5{n6 n4} - r9c5{n4 n8} - r9c6{n8 n7} - r9c2{n7 n2} - b9n2{r9c7 .} ==> r7c5≠2
whip[16]: b6n5{r4c9 r6c7} - c7n3{r6 r5} - c7n1{r5 r9} - r9n9{c7 c1} - r5n9{c1 c6} - c8n9{r5 r7} - b9n2{r7c8 r7c7} - c7n7{r7 r2} - b2n7{r2c6 r1c4} - r7n7{c4 c3} - r4c3{n7 n2} - r3n2{c3 c2} - r5n2{c2 c4} - r9c4{n2 n6} - r9c2{n6 n8} - r5c2{n8 .} ==> r4c9≠9
whip[7]: r4c9{n7 n5} - r2c9{n5 n8} - r1c9{n8 n9} - b2n9{r1c5 r3c6} - c6n8{r3 r9} - c6n7{r9 r2} - b3n7{r2c7 .} ==> r8c9≠7
whip[10]: r9n4{c6 c9} - r8c9{n4 n1} - b7n1{r8c1 r9c1} - r9n9{c1 c7} - r3n9{c7 c6} - r1n9{c5 c9} - r1n7{c9 c4} - b8n7{r7c4 r9c6} - c6n8{r9 r2} - b3n8{r2c8 .} ==> r8c6≠4
whip[16]: r1n7{c9 c4} - r7n7{c4 c3} - r4n7{c3 c8} - r4c9{n7 n5} - r2c9{n5 n8} - r1c9{n8 n9} - b2n9{r1c5 r3c6} - b2n8{r3c6 r1c5} - r7n8{c5 c1} - b7n9{r7c1 r9c1} - r5n9{c1 c8} - c8n6{r5 r2} - b2n6{r2c5 r3c4} - r3n1{c4 c3} - c3n8{r3 r6} - r6c8{n8 .} ==> r9c9≠7
whip[19]: r4n5{c9 c6} - c4n5{r6 r7} - r7n3{c4 c5} - r4n3{c5 c1} - r6n3{c2 c4} - r5n3{c4 c7} - c7n1{r5 r9} - r8c9{n1 n4} - r9c9{n4 n9} - c9n1{r9 r5} - b5n1{r5c4 r6c5} - c5n4{r6 r9} - b8n8{r9c5 r9c6} - r9c1{n8 n2} - c4n2{r9 r5} - r5c2{n2 n8} - r6c2{n8 n7} - r9n7{c2 c4} - r1c4{n7 .} ==> r6c7≠5
hidden-single-in-a-block ==> r4c9=5
whip[1]: c9n7{r2 .} ==> r2c7≠7, r2c8≠7
whip[10]: r3n8{c3 c6} - b2n9{r3c6 r1c5} - r1c9{n9 n7} - r1c4{n7 n3} - r7n3{c4 c5} - r7n8{c5 c1} - r7n5{c1 c4} - r6c4{n5 n1} - r6c5{n1 n4} - c3n4{r6 .} ==> r1c3≠8
whip[10]: b3n9{r3c7 r1c9} - r1n7{c9 c4} - r2n7{c6 c9} - b3n8{r2c9 r2c8} - c8n2{r2 r7} - r7n7{c8 c3} - b4n7{r4c3 r6c2} - r6c8{n7 n9} - c5n9{r6 r4} - c3n9{r4 .} ==> r7c7≠9
whip[12]: r7c7{n2 n7} - r7c8{n7 n9} - b9n2{r7c8 r9c7} - r9n9{c7 c1} - r9n1{c1 c9} - c9n4{r9 r8} - r8c5{n4 n6} - c5n2{r8 r4} - r4c1{n2 n3} - c6n3{r4 r2} - b2n7{r2c6 r1c4} - r9c4{n7 .} ==> r7c4≠2
whip[14]: r2c9{n8 n7} - r1c9{n7 n9} - b2n9{r1c5 r3c6} - c6n8{r3 r9} - c6n7{r9 r8} - c6n5{r8 r6} - c6n4{r6 r5} - b4n4{r5c1 r6c3} - r1c3{n4 n6} - r1c7{n6 n5} - c2n5{r1 r8} - c2n6{r8 r9} - c2n7{r9 r6} - r6n8{c2 .} ==> r2c8≠8
whip[1]: c8n8{r6 .} ==> r5c9≠8
hidden-pairs-in-a-column: c9{n7 n8}{r1 r2} ==> r1c9≠9
whip[1]: b3n9{r3c7 .} ==> r9c7≠9
z-chain[3]: r8n1{c3 c9} - r5c9{n1 n9} - r9n9{c9 .} ==> r9c1≠1
whip[1]: r9n1{c9 .} ==> r8c9≠1
naked-single ==> r8c9=4
whip[5]: r8c5{n6 n2} - r9c4{n2 n7} - r1c4{n7 n3} - r7c4{n3 n5} - r8c6{n5 .} ==> r9c5≠6
whip[5]: r8c5{n6 n2} - r9c4{n2 n7} - r1c4{n7 n3} - r7c4{n3 n5} - r8c6{n5 .} ==> r9c6≠6
whip[5]: r8c5{n2 n6} - r9c4{n6 n7} - r1c4{n7 n3} - r7c4{n3 n5} - r8c6{n5 .} ==> r9c5≠2
whip[6]: b8n2{r8c5 r9c4} - r5n2{c4 c1} - b4n4{r5c1 r6c3} - r1c3{n4 n6} - r3c2{n6 n8} - b4n8{r5c2 .} ==> r8c2≠2
t-whip[9]: r3n2{c3 c7} - r3n9{c7 c6} - r1n9{c5 c7} - c7n5{r1 r2} - c7n6{r2 r5} - r5c6{n6 n4} - c1n4{r5 r1} - r1n5{c1 c2} - b1n3{r1c2 .} ==> r2c1≠2
whip[9]: r8n1{c1 c3} - r3n1{c3 c4} - b5n1{r5c4 r6c5} - r2n1{c5 c1} - b1n5{r2c1 r1c2} - b1n3{r1c2 r1c1} - r1n4{c1 c3} - r6n4{c3 c6} - c6n5{r6 .} ==> r8c1≠5
whip[9]: r3n9{c7 c6} - r1n9{c5 c7} - c7n5{r1 r2} - c7n6{r2 r5} - r5c6{n6 n4} - r6c6{n4 n5} - b8n5{r8c6 r7c4} - c1n5{r7 r1} - c1n4{r1 .} ==> r3c7≠2
whip[1]: r3n2{c3 .} ==> r2c3≠2
biv-chain[4]: c5n1{r6 r2} - r3c4{n1 n6} - r3c7{n6 n9} - b2n9{r3c6 r1c5} ==> r6c5≠9
z-chain[5]: r3n1{c4 c3} - b1n2{r3c3 r3c2} - r5n2{c2 c1} - b4n4{r5c1 r6c3} - r6c5{n4 .} ==> r5c4≠1
whip[1]: r5n1{c9 .} ==> r6c7≠1
whip[8]: r1c4{n3 n7} - r7c4{n7 n5} - r6c4{n5 n1} - r3n1{c4 c3} - b1n2{r3c3 r3c2} - r5n2{c2 c1} - b4n4{r5c1 r6c3} - r6c5{n4 .} ==> r5c4≠3
t-whip[6]: r8n7{c3 c6} - b8n5{r8c6 r7c4} - c4n7{r7 r1} - c4n3{r1 r6} - r6c7{n3 n7} - c2n7{r6 .} ==> r7c3≠7
t-whip[7]: r2n5{c7 c1} - r7n5{c1 c4} - r7n3{c4 c5} - r2n3{c5 c6} - c4n3{r1 r6} - r6c7{n3 n7} - r7c7{n7 .} ==> r2c7≠2
hidden-single-in-a-block ==> r2c8=2
whip[1]: c8n6{r5 .} ==> r5c7≠6
z-chain[5]: c4n2{r9 r5} - b4n2{r5c2 r4c3} - r4n7{c3 c8} - r7c8{n7 n9} - r9n9{c9 .} ==> r9c1≠2
finned-x-wing-in-columns: n2{c5 c1}{r8 r4} ==> r4c3≠2
z-chain[4]: r9c1{n9 n8} - r7c3{n8 n2} - r7c7{n2 n7} - r7c8{n7 .} ==> r7c1≠9
z-chain[5]: r6c7{n7 n3} - r6c2{n3 n8} - r6c8{n8 n9} - r7n9{c8 c3} - r4c3{n9 .} ==> r6c3≠7
biv-chain[6]: r5n3{c2 c7} - r5n1{c7 c9} - r9c9{n1 n9} - r9c1{n9 n8} - r7c1{n8 n5} - c2n5{r8 r1} ==> r1c2≠3
whip[1]: c2n3{r6 .} ==> r4c1≠3
whip[1]: r4n3{c6 .} ==> r6c4≠3
biv-chain[3]: b2n7{r2c6 r1c4} - c4n3{r1 r7} - b8n5{r7c4 r8c6} ==> r8c6≠7
whip[1]: r8n7{c3 .} ==> r9c2≠7
biv-chain[3]: c2n5{r1 r8} - r8c6{n5 n6} - r9n6{c4 c2} ==> r1c2≠6
biv-chain[3]: r7n5{c1 c4} - c4n3{r7 r1} - b1n3{r1c1 r2c1} ==> r2c1≠5
hidden-single-in-a-row ==> r2c7=5
z-chain[3]: r2c9{n8 n7} - c6n7{r2 r9} - c6n8{r9 .} ==> r2c5≠8
biv-chain[5]: b5n2{r5c4 r4c5} - c5n9{r4 r1} - r1c7{n9 n6} - r1c3{n6 n4} - b4n4{r6c3 r5c1} ==> r5c1≠2
x-wing-in-columns: n2{c1 c5}{r4 r8} ==> r8c3≠2
t-whip[5]: b7n7{r8c2 r8c3} - r4c3{n7 n9} - r7n9{c3 c8} - r6n9{c8 c6} - c6n5{r6 .} ==> r8c2≠5
hidden-single-in-a-block ==> r7c1=5
hidden-single-in-a-block ==> r1c2=5
hidden-single-in-a-block ==> r8c6=5
hidden-single-in-a-block ==> r6c4=5
hidden-single-in-a-block ==> r6c5=1
hidden-single-in-a-block ==> r3c4=1
hidden-single-in-a-column ==> r9c5=4
naked-pairs-in-a-column: c4{r1 r7}{n3 n7} ==> r9c4≠7
biv-chain[4]: c9n8{r1 r2} - r2n7{c9 c6} - r9c6{n7 n8} - c5n8{r7 r1} ==> r1c1≠8
biv-chain[4]: r1c1{n3 n4} - b4n4{r5c1 r6c3} - r6c6{n4 n9} - b2n9{r3c6 r1c5} ==> r1c5≠3
biv-chain[4]: r1c7{n6 n9} - r3n9{c7 c6} - r6c6{n9 n4} - c3n4{r6 r1} ==> r1c3≠6
naked-single ==> r1c3=4
naked-single ==> r1c1=3
naked-single ==> r1c4=7
naked-single ==> r1c9=8
naked-single ==> r2c9=7
naked-single ==> r7c4=3
naked-single ==> r7c5=8
naked-single ==> r9c6=7
hidden-single-in-a-column ==> r5c1=4
hidden-single-in-a-block ==> r6c6=4
x-wing-in-rows: n9{r6 r7}{c3 c8} ==> r5c8≠9, r4c8≠9, r4c3≠9
naked-single ==> r4c3=7
naked-single ==> r4c8=6
naked-single ==> r5c8=8
hidden-single-in-a-column ==> r8c2=7
finned-x-wing-in-rows: n6{r8 r2}{c3 c5} ==> r1c5≠6
naked-single ==> r1c5=9
naked-single ==> r1c7=6
naked-single ==> r3c7=9
biv-chain[3]: c1n8{r2 r9} - b7n9{r9c1 r7c3} - c3n2{r7 r3} ==> r3c3≠8
biv-chain[3]: r3c3{n2 n6} - r8n6{c3 c5} - r8n2{c5 c1} ==> r7c3≠2
stte
At the start, the path is the same as François,, but they diverge. SudoRules as only one whip[19].
I wouldn't say the w rating is not absolute. It IS. More properly said: it is an intrinsic property of a puzzle, same as the B rating.
What is not fully guarantee with whips is, the simplest-first strategy (or any strategy exploring a single solution path) is not guarantee to find the W rating.
As I explained ling ago in [CRT] or [PBCS], together with precise examples, the reason is, whips don't have the confluence property. They are "not far from having it", but they don't have it. (Not far means that problems show up very rarely).
In the present case, the W rating may well be 19 in spite of yzfsfw solution, depending on whether inner loops are allowed or not. IN my standard approach, they are not.