Where do I go from here??

Post the puzzle or solving technique that's causing you trouble and someone will help

Where do I go from here??

Postby Gee » Thu Jul 19, 2007 1:26 am

I only got this far with this puzzle and then hit a brick wall. I don't even remotely know where to go from here. Any suggestion will be appreciated. This must be a real tough puzzle. Thanks.

*-----------*
|1..|.5.|..9|
|...|1..|.3.|
|..8|...|2..|
|---+---+---|
|.5.|..4|...|
|4..|.6.|..8|
|...|3..|.1.|
|---+---+---|
|..2|...|5..|
|.3.|..5|...|
|7..|.9.|..2|
*-----------*


*-----------*
|1..|.5.|..9|
|5..|1..|.3.|
|..8|...|251|
|---+---+---|
|.5.|..4|...|
|4..|56.|..8|
|...|3..|415|
|---+---+---|
|..2|...|5..|
|.3.|..5|...|
|7.5|.9.|..2|
*-----------*


*--------------------------------------------------------------------*
| 1 2467 3467 | 24678 5 23678 | 678 4678 9 |
| 5 24679 4679 | 1 2478 26789 | 678 3 467 |
| 369 4679 8 | 4679 347 679 | 2 5 1 |
|----------------------+----------------------+----------------------|
| 2389 5 179 | 2789 1278 4 | 679 2679 367 |
| 4 179 1379 | 5 6 1279 | 379 279 8 |
| 2689 6789 679 | 3 278 2789 | 4 1 5 |
|----------------------+----------------------+----------------------|
| 689 14689 2 | 4678 13478 1678 | 5 46789 3467 |
| 689 3 1469 | 24678 12478 5 | 16789 46789 467 |
| 7 1468 5 | 468 9 1368 | 1368 468 2 |
*--------------------------------------------------------------------*
Gee
 
Posts: 50
Joined: 18 March 2007

Postby daj95376 » Thu Jul 19, 2007 3:01 am

Someone probably has a sophisticated technique that'll crack your puzzle wide open. I'm not that someone. While you're waiting on their post, consider the following.

[r3c1]=3 => five hidden 3s, two hidden 1s => [c5] void of <1>

After [r3c1]<>3, basic techniques solve remaining puzzle.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby udosuk » Thu Jul 19, 2007 3:09 pm

Amazingly, I found that arcilla's approach works quite effectively in this particular puzzle.:!:

First of all, we need to construct the "appearance tables" listing the appearances of each digit (d1..d9) on each row (r1..r9) or column (c1..c9) as below:
Code: Select all
     c1      c2      c3      c4      c5      c6      c7      c8      c9
-----------------------------------------------------------------------------
d1:  1       579     458     2       478     579     89      6       3
d2:  46      12      7       148     2468    1256    3       45      9
d3:  34      8       15      6       37      19      59      2       47
d4:  5       12379   128     13789   2378    4       6       1789    278
d5:  2       4       9       5       1       8       7       3       6
d6:  3678    123679  1268    13789   5       12379   12489   14789   2478
d7:  9       12356   12456   13478   234678  123567  12458   14578   2478
d8:  4678    679     3       14789   24678   12679   1289    1789    5
d9:  34678   23567   24568   34      9       2356    458     4578    1

     d1      d2      d3      d4      d5      d6      d7      d8      d9
-----------------------------------------------------------------------------
r1:  1       246     36      2348    5       234678  234678  4678    9
r2:  4       256     8       2359    1       23679   235679  567     236
r3:  9       7       15      245     8       1246    2456    3       1246
r4:  35      1458    19      6       2       789     345789  145     13478
r5:  236     68      37      1       4       5       23678   9       23678
r6:  8       156     4       7       9       123     2356    1256    1236
r7:  256     3       59      24589   7       124689  45689   124568  128
r8:  357     45      2       34589   6       134789  45789   14578   1378
r9:  267     9       67      248     3       24678   1       24678   5

Here is an important special property about these tables:

For each digit, within each mini-row/mini-column, the digit must not appear more than once on each of the same group of {123}, {456} or {789}.
(Otherwise on the actual sudoku board we'll see the digit appearing twice or more within the same 3x3 block.)


As an example, consider the appearances of 3 along the columns:
Code: Select all
     c1      c2      c3      c4      c5      c6      c7      c8      c9
-----------------------------------------------------------------------------
d3:  34      8       15      6      *37     *19      59      2       47

On c56, there are only 4 different possibilities happening: [31], [39], [71], [79].
But we know [31] & [79] are not allowed (as it would imply two 3s in b2 & b8 respectively).
Therefore only [39] or [71] is possible.
This allows us to perform an ALS-like move on d1 & d3:
Code: Select all
     c1      c2      c3      c4      c5      c6      c7      c8      c9
-----------------------------------------------------------------------------
d1:  1       579    #458     2      #478     579    #89      6       3
d3:  34      8      *15      6      *37     *19     *59      2       47

From the above, d3c56 can only be [39] or [71].
As a result d3c3567 (*) can only be [1395] or [5719]
However, d3c3567=[5719] would force d1c357 to be {48}, 2 appearances on 3 columns, a contradiction.
Hence d3c3567=[1395].

And we can put the digit 3 on r1c3, r3c5, r9c6, r5c7. Then the rest of the puzzle can be solved (relatively) easily.

To represent the above move in ALS-like terms, the two ALSs are respectively d1c357={45789} and d3c37={159}. The restricted commons are 5 (c3) and 9 (c7). And the common to eliminate is d3c56=[71].

Alternatively, we can do this using the row-digit appearance table:
Code: Select all
     d1      d2      d3      d4      d5      d6      d7      d8      d9
-----------------------------------------------------------------------------
r1:  1       246     36      2348    5       234678  234678  4678    9
r2:  4       256     8       2359    1       23679   235679  567     236
r3:  9       7       15      245     8       1246    2456    3       1246
r4:  35      1458    19      6       2       789     345789  145     13478
r5: #236     68     *37      1       4       5       23678   9       23678
r6:  8       156     4       7       9       123     2356    1256    1236
r7: #256     3      *59      24589   7       124689  45689   124568  128
r8:  357     45      2       34589   6       134789  45789   14578   1378
r9: #267     9      *67      248     3       24678   1       24678   5

r79d3 cannot be [56] or [97], so must be [57] or [96].
If r79d3=[57], r579d3=[357] and r579d1 will only be left of 2 columns {26}, a contradiction.
Hence r79d3=[96], and the digit 3 must be in r7c9 & r9c6.

It's a very nice and powerful approach, but perhaps we need more work to formulate it better...:idea:
udosuk
 
Posts: 2698
Joined: 17 July 2005

Sorry

Postby Gee » Sat Jul 28, 2007 7:40 pm

I have had this puzzle for quite some time. I didn't realize I had posted it before. Truly sorry.
Gee
 
Posts: 50
Joined: 18 March 2007

Postby a » Fri Aug 17, 2007 11:29 am

after cheking the puzzle I believe there is a mistake in the original because it can't be solved.
After assuming that R7c9 has to be 3 we came to this position

1.3|45.|..9
5..|1..|.34
648|937|251
----------------
35.|..4|...
4..|56.|3.8
286|379|415
----------------
..2|.4.|5.3
.34|..5|...
7.5|.93|.42

now R9C4 has to be either 8 or 6. Both cases proove to be imposiible eventually.
a
 
Posts: 3
Joined: 13 August 2007

Postby udosuk » Fri Aug 17, 2007 2:10 pm

a wrote:after cheking the puzzle I believe there is a mistake in the original because it can't be solved.

...

now R9C4 has to be either 8 or 6. Both cases proove to be imposiible eventually.

There was no mistake in the original, it can be solved no problem.

R9C4=8 will lead to an easy contradiction. R9C4=6 is a valid placement and will lead to the eventual solution via singles.:idea:
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby a » Fri Aug 17, 2007 5:12 pm

my mistake.
6 does solve the puzzle easily.
That's why alcohol and sudoku solving is not a good combination(self reminder, sword of)
p.s. I'm new to this forum, so sorry for the double posting
Arch
a
 
Posts: 3
Joined: 13 August 2007


Return to Help with puzzles and solving techniques