I think there are some typos and some missing cells in your argument but I think you are looking at a discontinuous memory loop (cells a-b-c-d-e-f-g):
- Code: Select all
*---------------------------------------------------------------------------------*
| 359 1 7 | 2 359 35 | 4 8 6 |
| 2 69 369 | 1 4 8 | 39 7 5 |
| 8 4 359 | 359 7 6 | 1 239 29 |
|--------------------------+---------------------------+--------------------------|
| 1 b59 4 |ga3-5 6 237 | 8 f259 e279 |
|c5679 2 c569 | 8 15 157 |d569 4 3 |
| 3567 568 3568 | 4 25 9 | 56 1 e27 |
|--------------------------+---------------------------+--------------------------|
| 569 3 28 | 59 28 4 | 7 569 1 |
| 4 7 159 | 6 1359 135 | 2 359 8 |
| 569 5689 125689 | 7 123589 1235 | 359 3569 4 |
*---------------------------------------------------------------------------------*
(3=5) r4c4 - (5=9*) r4c2 - r5c13 = r5c7 - (9=27) r46c9 - (29*=5) r4c8 - (5=3) r4c4 => - 5 r4c4
In your wordy argument you have turned this around a bit and started at cell b and taken the paths b-a and b-c-d-e-f-g to arrive at the same result.
I suppose you could call this a Kraken candidate 3 r4c4 (my way) or a Kraken cell r4c2 (your way).
Kraken here refers to the situation where you consider all possible cases for a candidate or cell, and there is a common outcome for some other candidate. In this case the common outcome is that r4c4 is 3 (or not 5).
So I suppose Same Either Way = Kraken argument with two possibilities.
You get a slightly better result with a more common move as follows:
- Code: Select all
*--------------------------------------------------------------------------------*
| 359 1 7 | 2 359 35 | 4 8 6 |
| 2 69 369 | 1 4 8 | 39 7 5 |
| 8 4 359 | 359 7 6 | 1 239 29 |
|--------------------------+--------------------------+--------------------------|
| 1 b59 4 | 3-5 6 237-5 | 8 b259 b279 |
| 5679 2 569 | 8 15 157 | 569 4 3 |
| 3567 568 3568 | 4 a25 9 | 56 1 a27 |
|--------------------------+--------------------------+--------------------------|
| 569 3 28 | 59 28 4 | 7 569 1 |
| 4 7 159 | 6 1359 135 | 2 359 8 |
| 569 5689 125689 | 7 123589 1235 | 359 3569 4 |
*--------------------------------------------------------------------------------*
ALS XZ Rule: X = 7, Z = 5: (5=7) r6c59 - (7=5) r4c289 => - 5 r4c46;
The two ALSs marked a and b show that one of r6c5 and r4c28 must be 5 so you can eliminate 5 from r4c46, which can see all three of these cells.
Leren