Carcul wrote:For puzzle #6 we have...
Yet another way to solve it (sometimes its easier for me to solve it myself than to read the nice loop notation )
- Code: Select all
+----------------+----------------+----------------+
| 123 9 138 | 4 12 7 | 15 6 58 |
| 7 128 4 | 12 6 5 | 139 38 29 |
| 6 12 5 | 8 9 3 | 17 47 24 |
+----------------+----------------+----------------+
| 8 3 2 | 9 7 1 | 6 45 45 |
| 9 4 6 | 5 3 8 | 2 1 7 |
| 15 157 17 | 6 4 2 | 8 9 3 |
+----------------+----------------+----------------+
| 1235 1578 137 | 13 125 9 | 4 3578 6 |
| 4 257 379 | 23 8 6 | 3579 357 1 |
| 135 6 1389 | 7 15 4 | 359 2 589 |
+----------------+----------------+----------------+
If r1c5=1:
1.r1c1=2,r3c2=1,r2c2=8,r1c9=8
2.(r3c2=1)r3c9=2,r2c9=9
3.(r1c5=1)r9c5=5
No candidate left for r9c9.
=>r2c4=1
- Code: Select all
+----------------+----------------+----------------+
| 13 9 38 | 4 2 7 | 15 6 58 |
| 7 28 4 | 1 6 5 | 39 38 29 |
| 6 12 5 | 8 9 3 | 17 47 24 |
+----------------+----------------+----------------+
| 8 3 2 | 9 7 1 | 6 45 45 |
| 9 4 6 | 5 3 8 | 2 1 7 |
| 15 157 17 | 6 4 2 | 8 9 3 |
+----------------+----------------+----------------+
| 2 1578 17 | 3 15 9 | 4 78 6 |
| 4 57 39 | 2 8 6 | 3579 357 1 |
| 135 6 389 | 7 15 4 | 359 2 589 |
+----------------+----------------+----------------+
If r8c7=7:
1.r8c2=5,r8c8=3
2.r7c8=8,r2c8=3
=>r3c7=7