Hi jiesushang,
Welcome to the forum.
We can make some quick progress using the URs 12r78c34 and 89r12c67 (provided all candidates of the URs would be present in a state with a unique solution).
My first few steps are available at the beginning, with all of their eliminations mentioned (which leads to a big overlap).
9 truths: 3c19 + r3c2, r6c25, r7c34, r8c34 (lime and blue)
9 links: [3](UR 12r78c34), 3r3678, 4r6, 5c2
–3r3c345678, –3r6c34678, –3r7c25678, –3r8c25678,
–4r6c1346789,
–5r1245789c2
15 truths: 3c19 + r1c67, r2c67, r3c2, r6c25, r7c347, r8c346 (all marked truths)
15 links: 1r78, 2r78, 3r3678, 4r6, 5c2, 6c7, 7c6, [3](UR 89r12c67)
–1r7c125689, –1r8c125789,
–2r7c125689, –2r8c125789,
–3r3c345678, –3r6c34678, –3r7c2568, –3r8c2578,
–4r6c1346789,
–5r1245789c2,
–6r345689c7,
–7r345679c6
We can eliminate some extra 3s, I tried to avoid repeating truths and links, but it doesn't look very pretty:
6L A = ([3](UR 12r78c34), 3r6, 3c16, 3b578 + r7c34, r8c34) / 2
Diagram and short explanation: Show - Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
+-------+-------+-------+
| . . . | . . 3 | . . . |
| . . . | . . 3 | . . . |
| 3 . . | 3 3 3 | . . . |
+-------+-------+-------+
| 3 .123|123. 3 | . . . |
| 3 .123|123. 3 | . . . |
| 3 . . | . . 3 | . . . |
+-------+-------+-------+
Each marked candidate is part of at least two of the sublinks:
[3](UR 12r78c34), 3r6, 3c16, 3b578 + r7c34, r8c34
Therefore if 7 of them were true, you would in some sense place 14 true candidates into what amounts to 13 links.
9 truths: 3c16 + r3c2, r6c25, r7c34, r8c34
9 links: [6]A, 3r3, 4c6, 5c2
–3r3c345789,
–4r6c1346789,
–5r1245789c2
The only "new" elimination is -3r3c9 (allowing pointing candidates 3b3\c8).
After steps 1 and 3 (i.e. not using the 89 UR), we arrive here:
- Code: Select all
,--------------------------------,---------------------------------,---------------------------------,
| 12456789 12346789 123456789 | 123456789 123456789 789 | 689 123456789 12456789 |
| 12456789 12346789 123456789 | 123456789 123456789 789 | 89 123456789 12456789 |
| 123456789 a35 12456789 | 12456789 12456789 12456789 | 12456789 12456789 12456789 |
:--------------------------------+---------------------------------+---------------------------------:
| 12456789 12346789 123456789 | 123456789 d123456789 123456789 | 123456789 123456789 12456789 |
| 12456789 12346789 123456789 | 123456789 d123456789 123456789 | 123456789 123456789 12456789 |
| 12356789 b45 1256789 | 1256789 c34 1256789 | 1256789 1256789 12356789 |
:--------------------------------+---------------------------------+---------------------------------:
| 123456789 1246789 123 | 123 12456789 12456789 | 126 12456789 123456789 |
| 123456789 1246789 123 | 123 12456789 127 | 12456789 12456789 123456789 |
| 12456789 1246789–3 123456789 | 123456789 e123456789 123456789 | 123456789 123456789 12456789 |
'--------------------------------'---------------------------------'---------------------------------'
3b3\c8 => –3r459c8
3r3\b1 => –3b1p2356
(3=5)r3c2 – (5=4)r6c2 – (4=3)r6c5 – 3r45c6 = 3r9c6 => –3r9c2
Adding the eliminations from the 89 UR (step 2), we end up here:
- Code: Select all
,--------------------------------,--------------------------------,-------------------------------,
| 12456789 1246789 12456789 | 123456789 123456789 789 | 689 123456789 12456789 |
| 12456789 1246789 12456789 | 123456789 123456789 789 | 89 123456789 12456789 |
| 123456789 35 12456789 | 12456789 12456789 1245689 | 1245789 12456789 12456789 |
:--------------------------------+--------------------------------+-------------------------------:
| 12456789 12346789 123456789 | 123456789 123456789 12345689 | 12345789 12456789 12456789 |
| 12456789 12346789 123456789 | 123456789 123456789 12345689 | 12345789 12456789 12456789 |
| 12356789 45 1256789 | 1256789 34 125689 | 125789 1256789 12356789 |
:--------------------------------+--------------------------------+-------------------------------:
| 3456789 46789 123 | 123 456789 45689 | 126 456789 3456789 |
| 3456789 46789 123 | 123 456789 127 | 45789 456789 3456789 |
| 12456789 1246789 123456789 | 123456789 123456789 12345689 | 12345789 12456789 12456789 |
'--------------------------------'--------------------------------'-------------------------------'
I didn't find any way to get more eliminations (or get other eliminations using only the 89 UR).
Marek