I'll begin. I haven't found a way to use the 2479 cells in r13 and the missing 7 in r7c9. Nothing I found is rank0, not even partially.
We begin with an xyz-wing in b12 and a rank1 almost-MSLS in b369:
- Code: Select all
.---------------------------------.---------------------------------.---------------------------------.
| 123456789 a16 2479 |b136 123–6 2479 | 123456789 123456789 2479 |
| 123456789 123456789 123456789 | 123456789 b36 123456789 | 123456789 123456789 123456789 |
| 123456789 123456789 2479 | 123456789 2479 123456789 | 2479 123456789 #2367 |
:---------------------------------+---------------------------------+---------------------------------:
| 123456789 123456789 123456789 | 123456789 123456789 123456789 | 123456789 123456789 123456789 |
| 123456789 456 123456789 | 123456789 456 123456789 |#19 123456789 #3679 |
| 123456789 123456789 123456789 | 123456789 123456789 123456789 | 123456789 123456789 #367 |
:---------------------------------+---------------------------------+---------------------------------:
| 123456789 123456789 123458 | 123456789 456 1238 |#2358 #2358 145689–23 |
| 123456789 456 18 | 123456789 123456789 1458 | 123456789 123456789 #35678 |
| 123456789 123456789 123456789 | 123456789 123456789 123456789 |#158 123456789 #35678 |
'---------------------------------'---------------------------------'---------------------------------'
(6=1)r1c2 – (1=36)b2p15 => –6r1c5
9 truths: r579c7, r7c8, r35689c9 (#-marked cells)
10 links: 1c7, 2r7, 2c9, 3r7, 3c9, 5b9, 6c9, 7c9, 8b9, 9b6
=> –23r7c9
Now it gets more difficult. I will try to notate the next step as an AIC net, but no promises.
- Code: Select all
.---------------------------------.---------------------------------.---------------------------------.
|123456789 bc16 2479 |b136 ab123 2479 | 13456789–2 13456789–2 479–2 |
| 123456789 123456789 123456789 |123456789 bc36 123456789 | 123456789 123456789 123456789 |
| 123456789 123456789 2479 | 13456789–2 479–2 13456789–2| 2479 123456789 #2367 |
:---------------------------------+---------------------------------+---------------------------------:
| 123456789 123456789 123456789 | 123456789 123456789 123456789 | 123456789 123456789 123456789 |
| 123456789 d456 123456789 | 123456789 d456 123456789 |#19 123456789 #3679 |
| 123456789 123456789 123456789 | 123456789 123456789 123456789 | 123456789 123456789 #367 |
:---------------------------------+---------------------------------+---------------------------------:
| 123456789 123456789 ef123458 | 123456789 d456 f1238 |#2358 #2358 145689 |
| 123456789 d456 f18 | 123456789 123456789 ef1458 | 123456789 123456789 #35678 |
| 123456789 123456789 123456789 | 123456789 123456789 123456789 |#158 123456789 #35678 |
'---------------------------------'---------------------------------'---------------------------------'
2r1c5 = (136b2p125 & r1c245) – (1r1c2 | 3r2c5) = (6r1c2 & r2c5) – ((6=45)r58c2 & r57c5) – ((4|5)r7c3 | r8c6) =UR 18r78c36= (2|3)r7c36 – 23r7c78 =#= 2r3c9 => –2r1c789, –2r3c456
The hidden section proves an extra elimination (-1r1c7), which I will not try to notate as an AIC net.
- Code: Select all
+----------+----------+----------+
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
+----------+----------+----------+
| . . . | . . . | . . . |
| .#*45 . | .#*45 . | . . . |
| . . . | . . . | . . . |
+----------+----------+----------+
| . .#1458| .#*45 18 | . . . |
| .#*45 18 | . .*1458| . . . |
| . . . | . . . | . . . |
+----------+----------+----------+
UR 18r78c36 – at most 3 true candidates, i.e. 3-link
For each digit x:
2L x# = xr57c25b7 / 2
2L x* = xr58c25b8 / 2
7L A (all marked candidates) = ([2]4#, [2]4*, [2]5#, [2]5*, [3](UR 18) + r7c36, r8c36) / 2
- Code: Select all
+----------+----------+----------+
| . 6 . | 6 . . | . . . |
| . . . | . 6 . | . . . |
| . . . | . . . | . . . |
+----------+----------+----------+
| . . . | . . . | . . . |
| . 456 . | . 456 . | . . . |
| . . . | . . . | . . . |
+----------+----------+----------+
| . . 1458| . 456 18 | . . . |
| . 456 18 | . . 1458| . . . |
| . . . | . . . | . . . |
+----------+----------+----------+
9L B = ([7]A, 6r1, 6c25, 6b2 + r5c25, r7c356, r8c236) / 2
(A, the cells of A, and the 6s)
Finally, we can prove the eliminations:
- Code: Select all
.---------------------------------.---------------------------------.---------------------------------.
| 123456789 #16 2479 |#136 #123 2479 | 123456789 123456789 2479 |
| 123456789 123456789 123456789 | 123456789 #36 123456789 | 123456789 123456789 123456789 |
| 123456789 123456789 2479 | 123456789 2479 123456789 | 2479 123456789 #2367 |
:---------------------------------+---------------------------------+---------------------------------:
| 123456789 123456789 123456789 | 123456789 123456789 123456789 | 123456789 123456789 123456789 |
| 123456789 #456 123456789 | 123456789 #456 123456789 |#19 123456789 #3679 |
| 123456789 123456789 123456789 | 123456789 123456789 123456789 | 123456789 123456789 #367 |
:---------------------------------+---------------------------------+---------------------------------:
| 123456789 123456789 #123458 | 123456789 #456 #1238 |#2358 #2358 145689 |
| 123456789 #456 #18 | 123456789 123456789 #1458 | 123456789 123456789 #35678 |
| 123456789 123456789 123456789 | 123456789 123456789 123456789 |#158 123456789 #35678 |
'---------------------------------'---------------------------------'---------------------------------'
21 truths: r1c245, r2c5, r3c9, r5c2579, r6c9, r7c35678, r8c2369, r9c79 (#-marked cells)
22 links: [9]B, 1r1, 1c7, 2r7, 3r7, 3c9, 3b2, 5b9, 6c9, 7c9, 8b9, 9b6, [2]placeholder
where instead of the placeholder we put 2r1b3 for –2r1c789 or 2r3b2 for –2r3c456
In either case we also get -1r1c7.
Marek