A bit different (and much less elegant
):
- Code: Select all
+------------------------+-------------------------+------------------------+
| c4568 4567 1 | 5679 b789 2 | 467 4679 3 |
| 356 3567 236 | 15679 4 159 | f1267 8 2679 |
| 9 467 2468 | 3 178 a18 | 5 g1467 2467 |
+------------------------+-------------------------+------------------------+
| 1345 13459 7 | 129 1239 6 | 14 1459 8 |
| 1346 8 3469 | 179 5 139 | 1467 2 4679 |
| 2 1569 69 | 4 1789 189 | 3 15679 5679 |
+------------------------+-------------------------+------------------------+
| d3468 3469 5 | 29 239 7 | e2468 346 1 |
| 1348 2 3489 | 159 6 13459 | 478 3457 457 |
| 7 1346 346 | 8 123 1345 | 9 3456 2456 |
+------------------------+-------------------------+------------------------+
Central symmetry of the givens with digit permutation [1,9] [2,8] [3,7] [4,6] [5,5] => +5 r5c5
1. (1=8)r3c6 - r1c5 = r1c1 - r7c1 = (8-2)r7c7 = (2-1)r2c7 = (1)r3c8 loop => -18 r3c5, -67 r2c7, -8 r8c1, -46 r7c7 and (by sym.) -29 r7c5, -34 r8c3, -2r2c9, -46 r3c3; 4 placements
- Code: Select all
+-----------------------+----------------------+-----------------------+
| 4568 4567 1 | 569 89 2 | 467 4679 3 |
| 356 3567 i236 | 1569 4 159 |ih12 8 69-7 |
| 9 46 28 | 3 7 18 | 5 146 246 |
+-----------------------+----------------------+-----------------------+
| 1345 13459 7 | 129 129 6 | 4-1 1459 8 |
| b146 8 469 | 7 5 3 | a146 2 469 |
| 2 1569 6-9 | 4 189 189 | 3 15679 5679 |
+-----------------------+----------------------+-----------------------+
| 468 469 5 | f29 3 7 | g28 46 1 |
| c14-3 2 89 | 159 6 1459 | 478 3457 457 |
| 7 d1346 i346 | 8 e12 145 | 9 3456 2456 |
+-----------------------+----------------------+-----------------------+
2. (1)r5c7 = r5c1 - (*1)r8c1 = r9c2 - (1=2)r9c5 - r7c4 = r7c7 - (2)r2c7 = (1r2c7 & 23r29c3) => -1 r4c7, -3 r8c1* and (by sym.) -9 r6c3, -7 r2c9; ste