.
Solution using only Subsets and the most elementary bivalue-chains (length ≤ 4).
Resolution state after 11 singles and 5 whips[1]:
- Code: Select all
+-------------------+-------------------+-------------------+
! 1 579 3 ! 6 29 59 ! 24579 8 4579 !
! 6 589 4 ! 58 2389 7 ! 1259 1235 159 !
! 2 5789 579 ! 1 389 4 ! 5679 356 5679 !
+-------------------+-------------------+-------------------+
! 59 3 89 ! 4 6 2 ! 15 7 158 !
! 47 2 67 ! 58 18 158 ! 3 9 46 !
! 45 1 68 ! 9 7 3 ! 2456 2456 4568 !
+-------------------+-------------------+-------------------+
! 8 579 1 ! 2 49 6 ! 4579 45 3 !
! 3 6 59 ! 7 1489 189 ! 1459 145 2 !
! 79 4 2 ! 3 5 19 ! 8 16 1679 !
+-------------------+-------------------+-------------------+
finned-x-wing-in-rows: n7{r7 r1}{c2 c7} ==> r3c7 ≠ 7
biv-chain[3]: r5c9{n4 n6} - b4n6{r5c3 r6c3} - r6n8{c3 c9} ==> r6c9 ≠ 4
biv-chain[3]: c9n4{r1 r5} - r5c1{n4 n7} - r9n7{c1 c9} ==> r1c9 ≠ 7
x-wing-in-rows: n7{r1 r7}{c2 c7} ==> r3c2 ≠ 7 ;;; now that the fin has been eliminated, we have a simple x-wing where we had previously a finned one
biv-chain[3]: c9n7{r9 r3} - c3n7{r3 r5} - r5n6{c3 c9} ==> r9c9 ≠ 6
hidden-single-in-a-block ==> r9c8 = 6
biv-chain[3]: b3n7{r3c9 r1c7} - r1n4{c7 c9} - r5c9{n4 n6} ==> r3c9 ≠ 6
hidden-single-in-a-block ==> r3c7 = 6
hidden-pairs-in-a-row: r6{n6 n8}{c3 c9} ==> r6c9 ≠ 5
biv-chain[4]: r5c1{n4 n7} - b7n7{r9c1 r7c2} - c7n7{r7 r1} - b3n4{r1c7 r1c9} ==> r5c9 ≠ 4
singles ==> r5c9 = 6, r5c3 = 7, r5c1 = 4, r6c1 = 5, r4c1 = 9, r4c3 = 8, r6c3 = 6, r9c1 = 7, r6c9 = 8, r1c2 = 7, r3c9 = 7, r7c7 = 7, r1c9 = 4
finned-x-wing-in-rows: n5{r7 r3}{c8 c2} ==> r2c2 ≠ 5
whip[1]: b1n5{r3c3 .} ==> r3c8 ≠ 5
singles ==> r3c8 = 3, r2c5 = 3, r1c5 = 2
finned-x-wing-in-columns: n9{c3 c5}{r3 r8} ==> r8c6 ≠ 9
finned-x-wing-in-columns: n9{c6 c9}{r9 r1} ==> r1c7 ≠ 9
stte