WE #757 (March 21-March 27)

Post puzzles for others to solve here.

WE #757 (March 21-March 27)

Postby Cenoman » Sat Mar 27, 2021 8:50 pm

Weekly "extreme" puzzle (7.2), proposed by the site sudoku.org.uk
Code: Select all
 +---+---+---+
 |.5.|..7|.6.|
 |.3.|...|...|
 |6..|..5|3.4|
 +---+---+---+
 |...|5..|4.2|
 |5..|...|..9|
 |9.4|.26|...|
 +---+---+---+
 |3.2|1..|7.6|
 |...|...|.8.|
 |.7.|4..|.9.|
 +---+---+---+

.5...7.6..3.......6....53.4...5..4.25.......99.4.26...3.21..7.6.......8..7.4...9.


Edit 2: the true WE #757. Sorry
Cenoman
Cenoman
 
Posts: 3001
Joined: 21 November 2016
Location: France

Re: WE #757 (March 21-March 27)

Postby rjamil » Sat Mar 27, 2021 9:57 pm

Work in progress (W-Ring move):

Code: Select all
..3...1...4...15.....92..6......53...5.8.9.7...93......2..38.....46...2...6...4.. (Faulty one)
 +----------------------+----------+-----------------+
 | 2679-8  679-8 3      | 5  68  4 | 1    89    2789 |
 | 269-8  4      (28)   | 7  68  1 | 5    389   2389 |
 | 157(8) 17(8)  157(8) | 9  2   3 | 7(8) 6     4    |
 +----------------------+----------+-----------------+
 | 14678  1678   178    | 2  17  5 | 3    1489  189  |
 | 3      5      1(2)   | 8  4   9 | (2)6 7     16   |
 | 12478  178    9      | 3  17  6 | (28) 1458  158  |
 +----------------------+----------+-----------------+
 | 1579   2      157    | 4  3   8 | 679  15    1567 |
 | 1589   1389   4      | 6  59  7 | 9-8  2     1358 |
 | 5789   3789   6      | 1  59  2 | 4    358   3578 |
 +----------------------+----------+-----------------+

Grouped W-Ring: 28 @ r2c3 r6c7 SL Row 5 between 2 @ r5c7 and 2 @ r5c3
SL Row 3 between 8 @ r3c123 and 8 @ r3c7 => -8 @ r1c12 r2c1 r8c7; stte

R. Jamil
----------
Cenomen Thanks for providing W-Ring example i/o True WE #757 (March 21-March 27) puzzle.
BTW, did you have a copy of Andrew Stuart's sudokuwiki.org WU#274, December 2 - December 8 puzzle?
rjamil
 
Posts: 785
Joined: 15 October 2014
Location: Karachi, Pakistan

Re: WE #757 (March 21-March 27)

Postby Cenoman » Sat Mar 27, 2021 11:08 pm

Hi rjamil,

The puzzle you have solved is one of the many mith's Pi-puzzles. You can find it in this thread (first puzzle)
I don't catch your question about Andrew's WU #274. The puzzle is available in your own link. What do you expect ?
Cenoman
Cenoman
 
Posts: 3001
Joined: 21 November 2016
Location: France

Re: WE #757 (March 21-March 27)

Postby rjamil » Sat Mar 27, 2021 11:25 pm

Hi Cenoman,

Cenoman wrote:Hi rjamil,

The puzzle you have solved is one of the many mith's Pi-puzzles. You can find it in this thread (first puzzle)

Thanks for providing the original link of the first puzzle.

I don't catch your question about Andrew's WU #274. The puzzle is available in your own link. What do you expect ?

Actually, the link I provided contain weekly unsolvable from first, except WU #274 till site crashed.

R. Jamil
rjamil
 
Posts: 785
Joined: 15 October 2014
Location: Karachi, Pakistan

Re: WE #757 (March 21-March 27)

Postby Leren » Sun Mar 28, 2021 12:31 am

Code: Select all
*-------------------------------------------------*
| 24 5  19  |a2-3Aa 34B   7      | 189  6     18  |
| 24 3  179 | 68    68    1249Cf | 159  257  d157 |
| 6  8 f179 | 29    19g   5      | 3   e27    4   |
|-----------+--------------------+----------------|
| 7  6  38  | 5     1389  139e   | 4    13d   2   |
| 5  2  38  | 378   13478 134D   | 6    137   9   |
| 9  1  4   |b37b   2     6      | 58   357c c578 |
|-----------+--------------------+----------------|
| 3  9  2   | 1     5     8      | 7    4     6   |
| 1  4  56  | 23679 3679  239    | 25   8     35  |
| 8  7  56  | 4     36    23     | 125  9     135 |
*-------------------------------------------------*

Kraken Row 3 Digit 1:

3 r1c4 - (3=7) r6c4 - r6c9 = r2c9 - r3c8 = 7 r3c3    - 1 r3c3

3 r1c4 - (3=4) r1c5 - r2c6 = 4 r5c6 - 1 r5c6;

3 r1c4 - r6c4 = r6c8 - (3=1) r4c8   - 1 r4c6 *= r2c6 - 1 r3c5; => - 3 r1c4; stte

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: WE #757 (March 21-March 27)

Postby jco » Sun Mar 28, 2021 2:24 am

I found a solution in two steps.
After basics

Code: Select all
.-------------------------------------------------.
| 24  5  19  |a23     34     7    | 189  6    18  |
| 24  3  179 | 68     68     1249 | 159 c257  157 |
| 6   8  179 |a9-2    19     5    | 3   d27   4   |
|------------+--------------------+---------------|
| 7   6  38  | 5      1389   139  | 4    13   2   |
| 5   2  38  | 378    13478  134  | 6    137  9   |
| 9   1  4   |b37     2      6    | 58  c357  578 |
|------------+--------------------+---------------|
| 3   9  2   | 1      5      8    | 7    4    6   |
| 1   4  56  | 23679  3679   239  | 25   8    35  |
| 8   7  56  | 4      36     23   | 125  9    135 |
'-------------------------------------------------'

1. (9=23)r13c4-(3)r6c4=(3-52)r26c8=(2)r3c8 => -2 r3c4 (+4 placements)


Code: Select all
.-------------------------------------------------.
| 24  5  19 | e23     34     7   | 189   6    18  |
| 24  3  19 |  68     68    a4-2 | 159   57   157 |
| 6   8  7  |  9      1      5   | 3     2    4   |
|-----------+--------------------+----------------|
| 7   6  38 |  5      389    139 | 4     13   2   |
| 5   2  38 |  378    3478  b134 | 6    b137  9   |
| 9   1  4  | d37     2      6   | 58   c357 c578 |
|-----------+--------------------+----------------|
| 3   9  2  |  1      5      8   | 7     4    6   |
| 1   4  56 |  2367   3679   239 | 25    8    35  |
| 8   7  56 |  4      36     23  | 125   9    135 |
'-------------------------------------------------'

2. (4)r2c6=(4-17)r5c68=(7)r6c89-(7=32)r16c4 => -2 r2c6; ste

Edit: improved writing of chains.
Last edited by jco on Mon May 17, 2021 2:30 pm, edited 3 times in total.
JCO
jco
 
Posts: 758
Joined: 09 June 2020

Re: WE #757 (March 21-March 27)

Postby denis_berthier » Sun Mar 28, 2021 4:05 am

.
Resolution state after Singles and whips[1]:
Code: Select all
   24        5         19        2389      13489     7         189       6         18       
   24        3         179       2689      14689     1249      1589      257       1578     
   6         8         179       29        19        5         3         27        4         
   7         6         38        5         1389      139       4         13        2         
   5         2         38        378       13478     134       6         137       9         
   9         1         4         37        2         6         58        357       578       
   3         9         2         1         5         8         7         4         6         
   1         4         56        23679     3679      239       25        8         35       
   8         7         56        4         36        23        125       9         135


1) A simple solution can be obtained with reversible chains no longer than 4:
Code: Select all
naked-triplets-in-a-row: r1{c3 c7 c9}{n1 n9 n8} ==> r1c5 ≠ 9, r1c5 ≠ 8, r1c5 ≠ 1, r1c4 ≠ 9, r1c4 ≠ 8
whip[1]: r1n8{c9 .} ==> r2c7 ≠ 8, r2c9 ≠ 8
hidden-pairs-in-a-row: r2{n6 n8}{c4 c5} ==> r2c5 ≠ 9, r2c5 ≠ 4, r2c5 ≠ 1, r2c4 ≠ 9, r2c4 ≠ 2
biv-chain[3]: r6c4{n7 n3} - b2n3{r1c4 r1c5} - c5n4{r1 r5} ==> r5c5 ≠ 7
hidden-single-in-a-column ==> r8c5 = 7
z-chain[3]: r5c3{n3 n8} - r5c4{n8 n7} - r6c4{n7 .} ==> r5c5 ≠ 3
z-chain[3]: r5c3{n3 n8} - r5c4{n8 n7} - r6c4{n7 .} ==> r5c6 ≠ 3
biv-chain[4]: r3c8{n2 n7} - c9n7{r2 r6} - r6c4{n7 n3} - r1c4{n3 n2} ==> r3c4 ≠ 2
singles ==> r3c4 = 9, r3c5 = 1, r3c3 = 7, r3c8 = 2, r4c5 = 9, r4c3 = 8, r5c3 = 3, r8c6 = 9
biv-chain[3]: r1c4{n3 n2} - c6n2{r2 r9} - c6n3{r9 r4} ==> r6c4 ≠ 3
stte


There are 8 W1-anti-backdoors:
Code: Select all
n8r6c7 n3r6c4 n4r5c6 n4r2c1 n8r1c9 n4r1c5 n3r1c4 n2r1c1

Five of them lead to a single step solution.

2) The simplest single-step solution by whips can be obtained using a whip[7]:
Code: Select all
whip[7]: r1n3{c5 c4} - r6c4{n3 n7} - r5n7{c5 c8} - r3n7{c8 c3} - r3n1{c3 c5} - r5n1{c5 c6} - r5n4{c6 .} ==> r1c5 ≠ 4
stte


4 other single-step solutions can be obtained with longer whips:
Code: Select all
whip[8]: r1n4{c1 c5} - r1n3{c5 c4} - r6c4{n3 n7} - r5n7{c5 c8} - r3n7{c8 c3} - r3n1{c3 c5} - r5n1{c5 c6} - r5n4{c6 .} ==> r2c1 ≠ 4
stte

OR

whip[8]: r6c4{n3 n7} - r5n7{c5 c8} - r3n7{c8 c3} - r3n1{c3 c5} - r5n1{c5 c6} - r5n4{c6 c5} - r1n4{c5 c1} - r1n2{c1 .} ==> r1c4 ≠ 3
stte

OR

whip[8]: r1n4{c1 c5} - r1n3{c5 c4} - r6c4{n3 n7} - r5n7{c5 c8} - r3n7{c8 c3} - r3n1{c3 c5} - r5n1{c5 c6} - r5n4{c6 .} ==> r1c1 ≠ 2
stte

OR

whip[10]: r1n3{c4 c5} - r1n4{c5 c1} - r1n2{c1 c4} - r3c4{n2 n9} - r3c5{n9 n1} - r2c6{n1 n4} - c5n4{r2 r5} - c5n7{r5 r8} - r8c4{n7 n6} - r9c5{n6 .} ==> r6c4 ≠ 3

stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: WE #757 (March 21-March 27)

Postby RSW » Sun Mar 28, 2021 8:44 am

Code: Select all
 +-----------+--------------------+-------------+
 |a24 5  19  | b23    c34    7    | 189 6   18  |
 | 24 3  179 |  68     68    1249 | 159 257 157 |
 | 6  8 g179 |  29    g19    5    | 3  f27  4   |
 +-----------+--------------------+-------------+
 | 7  6  38  |  5      1389  139  | 4   13  2   |
 | 5  2 e38  |cd378 def13478 134  | 6  e137 9   |
 | 9  1  4   | c37     2     6    | 58  357 578 |
 +-----------+--------------------+-------------+
 | 3  9  2   | 1       5     8    | 7   4   6   |
 | 1  4  56  | 23679   3679  239  | 25  8   35  |
 | 8  7  56  | 4       36    23   | 125 9   135 |
 +-----------+--------------------+-------------+

Nishio net
2r1c1? > 3r1c4 > (7r6c4, 4r1c5, -3r5c4 ) > (-47r5c5, 8r5c4) > (-8r5c5, 3r5c3, 7r5c8) > (1r5c5, 2r3c8) > (9r3c5, 1r3c3) > -7r3! => 4r1c1; stte
RSW
 
Posts: 671
Joined: 01 December 2018
Location: Western Canada

Re: WE #757 (March 21-March 27)

Postby pjb » Sun Mar 28, 2021 12:05 pm

Code: Select all
 24      5       19     | 2-3   j34      7      | 189    6      18     
 24      3       179    | 68     68     i1249   | 159    257    157   
 6       8      e179    | 29    f19      5      | 3     d27     4     
------------------------+-----------------------+---------------------
 7       6       38     | 5      189-3   139    | 4      13     2     
 5       2       38     |b378  gb1478-3 h134    | 6     c137    9     
 9       1       4      |a37     2       6      | 58     357    578   
------------------------+-----------------------+---------------------
 3       9       2      | 1      5       8      | 7      4      6     
 1       4       56     | 23679  3679    239    | 25     8      35     
 8       7       56     | 4      36      23     | 125    9      135   

(3=7)r6c4 - (7)r5c45 = (7)r5c8 - (7)r3c8 = (7-1)r3c3 = (1)r3c5 - (1)r5c5*8 = (1-4)r5c6 = (4)r2c6 - (4=3)r1c5 => -3 r1c4, r45c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia

Re: WE #757 (March 21-March 27)

Postby SteveG48 » Sun Mar 28, 2021 4:56 pm

Code: Select all
 *---------------------------------------------------------------------*
 | 24     5      19     | 2-3   h34      7      | 189    6      18     |
 | 24     3      179    | 68     68      1249   | 159    257    157    |
 | 6      8      179    |e29    e19      5      | 3    de27     4      |
 *----------------------+-----------------------+----------------------|
 | 7      6      38     | 5     f189-3  f139    | 4    de13     2      |
 | 5      2      38     | 378  fh1478-3 g134    | 6     c137    9      |
 | 9      1      4      |a37     2       6      |c58   bc357  bc578    |
 *----------------------+-----------------------+----------------------|
 | 3      9      2      | 1      5       8      | 7      4      6      |
 | 1      4      56     | 23679  3679    239    | 25     8      35     |
 | 8      7      56     | 4      36      23     | 125    9      135    |
 *---------------------------------------------------------------------*


(3=7)r6c4 - 7r6c89 = ((583)r6c789)&(7r5c8) - (3|7)r34c8 = ((291)r3c458)&(1r4c8) - 1b5p235 = (1-4)r5c6 = (43)r1c5 => -3 r1c4,r45c5 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4496
Joined: 08 November 2013
Location: Orlando, Florida

Re: WE #757 (March 21-March 27)

Postby SteveG48 » Sun Mar 28, 2021 5:03 pm

Looks like mine and Phil's are almost the same. Who woulda thunk it?
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4496
Joined: 08 November 2013
Location: Orlando, Florida

Re: WE #757 (March 21-March 27)

Postby Cenoman » Mon Mar 29, 2021 4:20 pm

SteveG48 wrote:Looks like mine and Phil's are almost the same. Who woulda thunk it?

Hi Steve,
You use quite the same cells, with slight differences:
-Phil's is a memory chain [weak link (7-1)r5c8] while your AIC uses the AALS r34c8, and eventually, Phil uses the strong link (1)r5c58=r5c6 while you use (1)b5p235=b5p6.

In the same vein, I had the following:
Code: Select all
 +------------------+-------------------------+--------------------+
 |  24   5    19    | b23    dc34      7      |  189   6     18    |
 |  24   3    179   |  6-8    e68      1249   |  159   257   157   |
 |  6    8    179   |  29      19      5      |  3     27    4     |
 +------------------+-------------------------+--------------------+
 |  7    6    38    |  5       1389    139    |  4     13    2     |
 |  5    2    38    | a378    e13478   134    |  6     137   9     |
 |  9    1    4     | a37      2       6      |  58    357   578   |
 +------------------+-------------------------+--------------------+
 |  3    9    2     |  1       5       8      |  7     4     6     |
 |  1    4    56    |  2369-7 e3679    239    |  25    8     35    |
 |  8    7    56    |  4     ed36      23     |  125   9     135   |
 +------------------+-------------------------+--------------------+

(78=3)r56c4 - r1c4 = r1c5 - (3r9c5 | 4r1c5) = (68r29c5 & 47r58c5) => -8 r2c4, -7r8c4; ste
Cenoman
Cenoman
 
Posts: 3001
Joined: 21 November 2016
Location: France

Re: WE #757 (March 21-March 27)

Postby SteveG48 » Mon Mar 29, 2021 8:26 pm

Cenoman wrote:(78=3)r56c4 - r1c4 = r1c5 - (3r9c5 | 4r1c5) = (68r29c5 & 47r58c5) => -8 r2c4, -7r8c4; ste


Oooh, that's nice!
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4496
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles