Thank you JCO for your solution.
Here is my one stepper:
- Code: Select all
+------------------------+------------------------+-------------------------+
| b68 5 48 | 1 2 za4678* | a467* 9 3 |
| 9 f346 7 | 456 36 3456 | 8 2 1 |
| g168 2 Fg1348 | 4678 Gg3678 9 | 4567 47* 4567 |
+------------------------+------------------------+-------------------------+
| 25678 Be46 2489 | 3 1 zDAc4678* | 45679 47* 245679 |
| 267 1 2349 | 467 5 467 | 34679 8 24679 |
| 5678 e346 ECe348 |Ed4678 9 2 | 134567 13 4567 |
+------------------------+------------------------+-------------------------+
| 12 8 12 | 9 367 367 | 347 5 47 |
| 4 9 6 | 578 Gh378 13578 | 2 13 78 |
| 3 7 5 | 2 4 1-8 | 19 6 89 |
+------------------------+------------------------+-------------------------+
Bivalue oddagon (47)r14,c68,b3 (*) having 5 guardians, with kraken box (6)b1p157 & kraken cell (348)r6c3
(6)r1c67 - r1c1 = [(8)r4c6 = r6c4 - (8=346)b4p289 - r2c2 = (613-8)r3c135 = (8)r8c5]
(6)r4c6 - (6=4)r4c2 - r6c3 = [(8)r4c6 = r6c4 - (8=3)r6c3 - r3c3 = (38)r38c5]
(8)r14c6
=> -8r9c6; ste
As a net:
- Code: Select all
(6)r2c2 - (6=348)b4p289 - r6c4 = (8)r4c6
||
(6)r1c67 - (6)r1c1
|| ||
|| (613-8)r3c135 = (8)r8c5
||
|| (8)r6c3 - r6c4 = (8)r4c6
|| ||
(6)r4c6 - (6=4)r4c2 - (4)r6c3
|| ||
|| (3)r6c3 - r3c3 = (38)r38c5
||
(8)r14c6
=> -8 r9c6
There is also this rather simple solution in two steps:
- Code: Select all
+-----------------------+------------------------+-------------------------+
| 68 5 B48 | 1 2 4678* | 467* 9 3 |
| 9 346 7 | 456 36 3456 | 8 2 1 |
| 168 2 C1348 | 4678 D3678 9 | 4567 47* 4567 |
+-----------------------+------------------------+-------------------------+
| a25678 46 A2489 | 3 1 zd468-7 | 45679 47* 245679 |
| b267 1 2349 | c467 5 c467 | 34679 8 24679 |
| a5678 346 B348 | d4678 9 2 | 134567 13 4567 |
+-----------------------+------------------------+-------------------------+
| 12 8 12 | 9 367 367 | 347 5 47 |
| 4 9 6 | 578 D378 13578 | 2 13 78 |
| 3 7 5 | 2 4 1-8 | 19 6 89 |
+-----------------------+------------------------+-------------------------+
1. (7)r1c6 = r1c7 - r3c8 = r4c8 => -7 r4c6
2. Kraken row (8)r4c136
(85-7)r46c1 = r5c1 - r5c46 = (78)b5p37
(8)r4c3 - (8=43)r16c3 - r3c3 = (38)r38c5
(8)r4c6
=> -8 r9c6; ste
Note:
These two steps can be gathered together in a single matrix (BTM Block Triangular Matrix) of size 11
- Code: Select all
8r8c5 8r3c5
3r8c5 3r3c3
3r6c3 4r6c3 8r6c3
4r1c3 8r1c3
8r4c6 8r4c3 8r4c1
5r4c1 5r6c1
7r4c1 7r6c1 7r5c1
7r5c46 7r6c4 7r4c6
8r4c6 8r6c4
7r4c8 7r3c8
7r1c6 7r1c7
------------------------------------------------------------------
-8r9c6
This not a Pigeonhole Matrix (because of col. 10) nor the matrix of a whip
Note that YSF_sudoku solver finds a solving whip(11)