Hi Yogi,
The word symmetrical here has to be read as a synonym of automorphic.
The puzzle pattern is symmetric about its center (r5c5) (or equivalently, in a 180° rotation)
If you run such a transformation, you get:
- Code: Select all
+-------+-------+-------+
| 5 . 3 | . . 9 | . . . |
| . . . | . 4 . | . . . |
| . 1 9 | 8 . . | . . . |
+-------+-------+-------+
| 4 . . | 1 9 . | . . 5 |
| . 6 . | . . . | . 9 . |
| 1 . . | . 6 5 | . . 2 |
+-------+-------+-------+
| . . . | . . 7 | 6 5 . |
| . . . | . 2 . | . . . |
| . . . | 6 . . | 3 . 1 |
+-------+-------+-------+
And now, if you relabel this puzzle with (1,5) (2,4) (3,3) (6,9) (7,8), you get urhegyi's original puzzle, with demonstrate the automorphism (i.e. a transformation to itself, different from identity). In this symmetry, r5c5 is invariant in the pattern move, must contain the invariant digit in the relabelling.
For a complete study of sudoku automorphisms, read the following
eleven's thread.PM's without any basics (not even singles)
- Code: Select all
+----------------------------+----------------------+----------------------------+
| 1 2478 3 | 48 58 6 | 24578 245789 2789 |
| 4789 478 4789 | 1348 2 3459 | 145678 345789 36789 |
| 489 5 6 | 7 138 349 | 1248 23489 2389 |
+----------------------------+----------------------+----------------------------+
| 2 3478 4-78 | 5 6 347 | 78* 3789 1 |
| 3478 9 1478 | 2348 78+3 2347 | 2578 6 2378 |
| 5 3678 78* | 238 9 1 | 2-78 2378 4 |
+----------------------------+----------------------+----------------------------+
| 3467 23467 2457 | 236 357 8 | 9 1 267 |
| 36789 123678 125789 | 1236 4 2357 | 2678 278 2678 |
| 4678 124678 12478 | 9 17 27 | 3 2478 5 |
+----------------------------+----------------------+----------------------------+
The givens have a central symmetry, with digit relabelling (1,5) (2,4) (3,3) (6,9) (7,8)
=> +3 r5c5
Look at symmetrical cells r4c7, r6c3: if one is 7, the other is 8 => they form a remote pair => -78 r4c3, r6c7; ste