- Code: Select all
*-----------*
|.5.|1.3|.9.|
|9..|546|..3|
|..4|.9.|6..|
|---+---+---|
|63.|.5.|.89|
|...|...|...|
|89.|.2.|.64|
|---+---+---|
|..3|.1.|8..|
|1..|438|..6|
|.8.|6.5|.3.|
*-----------*
Play/Print this puzzle online
*-----------*
|.5.|1.3|.9.|
|9..|546|..3|
|..4|.9.|6..|
|---+---+---|
|63.|.5.|.89|
|...|...|...|
|89.|.2.|.64|
|---+---+---|
|..3|.1.|8..|
|1..|438|..6|
|.8.|6.5|.3.|
*-----------*
*-----------------------------------------------------*
| 27 5 6 | 1 8 3 | 4 9 2-7 |
| 9 27 8 | 5 4 6 |d127 127 3 |
| 3 1 4 | 2 9 7 | 6 5 8 |
|-----------------+-----------------+-----------------|
| 6 3 12 | 7 5 4 | 12 8 9 |
| 25 4 1257 | 8 6 9 | 3 127 B1257 |
| 8 9 57 | 3 2 1 |c57 6 4 |
|-----------------+-----------------+-----------------|
| 57 6 3 | 9 1 2 | 8 4 a57 |
| 1 27 59 | 4 3 8 |b59 27 6 |
| 4 8 29 | 6 7 5 | 129 3 12 |
*-----------------------------------------------------*
*-----------------------------------------------------------*
|c27 5 6 | 1 8 3 | 4 9 b27 |
| 9 27 8 | 5 4 6 | 127 127 3 |
| 3 1 4 | 2 9 7 | 6 5 8 |
|-------------------+-------------------+-------------------|
| 6 3 12 | 7 5 4 | 12 8 9 |
| 25 4 1257 | 8 6 9 | 3 12-7 *57=12 |
| 8 9 57 | 3 2 1 |*57 6 4 |
|-------------------+-------------------+-------------------|
|d57 6 3 | 9 1 2 | 8 4 57 |
| 1 e27 59 | 4 3 8 | 59 f27 6 |
| 4 8 29 | 6 7 5 | 129 3 a12 |
*-----------------------------------------------------------*
*-----------------------------------------------------------*
| 27 5 6 | 1 8 3 | 4 9 27 |
| 9 a27 8 | 5 4 6 |*127 127 3 |
| 3 1 4 | 2 9 7 | 6 5 8 |
|-------------------+-------------------+-------------------|
| 6 3 12 | 7 5 4 |*12 8 9 |
| 25 4 1257 | 8 6 9 | 3 127 1257 |
| 8 9 57 | 3 2 1 | 57 6 4 |
|-------------------+-------------------+-------------------|
| 57 6 3 | 9 1 2 | 8 4 57 |
| 1 b27 59 | 4 3 8 | 59 27 6 |
| 4 8 c29 | 6 7 5 |d9-12 3 12 |
*-----------------------------------------------------------*
There are different "equivalent" ways to justify -7r5c8 :tlanglet wrote:ANS(75=12)r6c7,r5c9
1: (75) r6c7,r5c9 => r5c8<>7
2: (12)r5c9 => LS(12)r59c9-(2=7)r1c9-r1c1=r7c1-r8c2=7r8c8 => r5c8<>7
I did not know how to notate this as a single statement with the "Almost" component forming a LS. Any suggestions?
7r5c8
7r8c8=7r8c2
7r7c1=7r1c1
7r1c9=2r1c9
2r9c9=1r9c9
7r5c9=============2r5c9=1r5c9=5r5c9
7r6c7=========================5r6c7
7r8c8=7r8c2
7r7c1=7r1c1
7r1c9=2r1c9
2r9c9=1r9c9
7r5c9=============2r5c9=1r5c9=5r5c9
7r6c7=========================5r6c7
7r8c8=7r8c2
7r7c1=7r1c1
7r1c9=2r1c9
2r9c9=1r9c9
2r5c9=1r5c9=5r5c9=7r5c9
5r6c7=7r6c7
+------------+-------+--------------+
| 27 5 6 | 1 8 3 | 4 9 27 |
| 9 27 8 | 5 4 6 | 127 127 3 |
| 3 1 4 | 2 9 7 | 6 5 8 |
+------------+-------+--------------+
| 6 3 12 | 7 5 4 | 12 8 9 |
| 25 4 1257 | 8 6 9 | 3 127 1257 |
| 8 9 57 | 3 2 1 | 57 6 4 |
+------------+-------+--------------+
| 57 6 3 | 9 1 2 | 8 4 57 |
| 1 27 59 | 4 3 8 | 59 27 6 |
| 4 8 29 | 6 7 5 | 129 3 12 |
+------------+-------+--------------+
M Wing Type 7 A or B
Marty R. wrote:Leren, is there someplace that lists and defines these various types of M-Wings?
JC Van Hay wrote:There are different "equivalent" ways to justify -7r5c8 :tlanglet wrote:ANS(75=12)r6c7,r5c9
1: (75) r6c7,r5c9 => r5c8<>7
2: (12)r5c9 => LS(12)r59c9-(2=7)r1c9-r1c1=r7c1-r8c2=7r8c8 => r5c8<>7
I did not know how to notate this as a single statement with the "Almost" component forming a LS. Any suggestions?
1. Forcing Chain :
If r5c8=7->r8c2=7=r1c1,r1c9=2,r9c9=1; r5c9=5; r6c7 is empty :=> -7r5c8
This can be fully justified by writing down the following "Triangular Matrix" :2. The Triangular Matrix may be written without any reference of the target :
- Code: Select all
7r5c8
7r8c8=7r8c2
7r7c1=7r1c1
7r1c9=2r1c9
2r9c9=1r9c9
7r5c9=============2r5c9=1r5c9=5r5c9
7r6c7=========================5r6c7In this case, theory shows that the first column is a derived strong set : 7r8c8=7r5c9=7r6c7 :=> -7r5c8
- Code: Select all
7r8c8=7r8c2
7r7c1=7r1c1
7r1c9=2r1c9
2r9c9=1r9c9
7r5c9=============2r5c9=1r5c9=5r5c9
7r6c7=========================5r6c7
3. Finally, the Triangular Matrix may be rewritten as a Transfer Matrix :that is, in Eureka notation :
- Code: Select all
7r8c8=7r8c2
7r7c1=7r1c1
7r1c9=2r1c9
2r9c9=1r9c9
2r5c9=1r5c9=5r5c9=7r5c9
5r6c7=7r6c7
7r8c8=7r8c2-7r7c1=7r1c1-(7=2)r1c9-NP(12)r59c9=NP(57)r6c7,r5c9 :=> -7r5c8
Note : This "AIC" is readable from left to right and from right to left !
JC