Vanhegan fiendish November 3, 2012

Post puzzles for others to solve here.

Vanhegan fiendish November 3, 2012

Postby ArkieTech » Sat Nov 03, 2012 5:35 am

Code: Select all
 *-----------*
 |4.5|...|..2|
 |.37|1.5|.6.|
 |...|4..|.85|
 |---+---+---|
 |.8.|7.2|51.|
 |...|...|...|
 |.52|9.6|.7.|
 |---+---+---|
 |64.|..1|...|
 |.7.|8.4|65.|
 |5..|...|2.8|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Vanhegan fiendish November 3, 2012

Postby Marty R. » Sat Nov 03, 2012 4:42 pm

Code: Select all
+----------+-----------+-----------+
| 4  19 5  | 6 78   89 | 17  3 2   |
| 8  3  7  | 1 2    5  | 49  6 49  |
| 19 2  6  | 4 37   39 | 17  8 5   |
+----------+-----------+-----------+
| 39 8  49 | 7 34   2  | 5   1 6   |
| 7  6  14 | 5 1348 38 | 489 2 349 |
| 13 5  2  | 9 1348 6  | 48  7 34  |
+----------+-----------+-----------+
| 6  4  8  | 2 5    1  | 3   9 7   |
| 2  7  3  | 8 9    4  | 6   5 1   |
| 5  19 19 | 3 6    7  | 2   4 8   |
+----------+-----------+-----------+

Play this puzzle online at the Daily Sudoku site

I'm gonna be a ballroom dancer and do the two-step. :lol:

Type 4 UR (49); r5c79<>4
BUG+1; r6c5=3
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Vanhegan fiendish November 3, 2012

Postby ArkieTech » Sat Nov 03, 2012 8:04 pm

Marty R. wrote:I'm gonna be a ballroom dancer and do the two-step. :lol:

Type 4 UR (49); r5c79<>4
BUG+1; r6c5=3


They also do that in Texas.

note the weakly linked bivalue at r4c1

Code: Select all
 
 *-----------------------------------------------------------*
 | 4     19    5     | 6     78    89    | 17    3     2     |
 | 8     3     7     | 1     2     5     | 49    6     49    |
 |b19    2     6     | 4     7-3  a39    | 17    8     5     |
 |-------------------+-------------------+-------------------|
 |c39    8     49    | 7    d34    2     | 5     1     6     |
 | 7     6     14    | 5     1348  8-3   | 489   2     349   |
 | 13    5     2     | 9     1348  6     | 48    7     34    |
 |-------------------+-------------------+-------------------|
 | 6     4     8     | 2     5     1     | 3     9     7     |
 | 2     7     3     | 8     9     4     | 6     5     1     |
 | 5     19    19    | 3     6     7     | 2     4     8     |
 *-----------------------------------------------------------*
m-wing
(3=9)r3c6-r3c1=(9-3)r4c1=3r4c5 => -3r3c5,r5c6
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Vanhegan fiendish November 3, 2012

Postby Marty R. » Sat Nov 03, 2012 8:49 pm

I knew there was a shorter solution and looked at it again when I returned home. It made the same eliminations as the M-Wing but I first saw it as an XY-Wing 193 with transport, which is really just an XY-Chain.

If you'd look at my notation I'd appreciate it.

Code: Select all
+----------+-----------+-----------+
| 4  19 5  | 6 78   89 | 17  3 2   |
| 8  3  7  | 1 2    5  | 49  6 49  |
| 19 2  6  | 4 37   39 | 17  8 5   |
+----------+-----------+-----------+
| 39 8  49 | 7 34   2  | 5   1 6   |
| 7  6  14 | 5 1348 38 | 489 2 349 |
| 13 5  2  | 9 1348 6  | 48  7 34  |
+----------+-----------+-----------+
| 6  4  8  | 2 5    1  | 3   9 7   |
| 2  7  3  | 8 9    4  | 6   5 1   |
| 5  19 19 | 3 6    7  | 2   4 8   |
+----------+-----------+-----------+


(3=9)r3c6-(1=3=9)r364c1-(4=3)r4c35-->r3c5, r5c6<>3
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Vanhegan fiendish November 3, 2012

Postby ArkieTech » Sat Nov 03, 2012 10:57 pm

Marty R. wrote:I knew there was a shorter solution and looked at it again when I returned home. It made the same eliminations as the M-Wing but I first saw it as an XY-Wing 193 with transport, which is really just an XY-Chain.

If you'd look at my notation I'd appreciate it.

(3=9)r3c6-(1=3=9)r364c1-(4=3)r4c35-->r3c5, r5c6<>3


I don't see what you were trying to do with the notation.

I do see an xy-chain:
(3=9)r3c6-(9=1)r3c1-(1=3)r6c1-(3=9)r4c1-(9=4)r4c3-(4=3)r4c5 => -3r3c5,r5c6

you could shorten this to an 394 xy-wing
(3=9)r3c6-(9=4)r3c1,r4c13,r6c1-(4=3)r4c5 => -3r3c5,r5c6

But I am also a rookie at this stuff :D
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Vanhegan fiendish November 3, 2012

Postby Marty R. » Sun Nov 04, 2012 12:02 am

Dan, you're no rookie. :D

(3=9)r3c6-(1=3=9)r364c1-(4=3)r4c35-->r3c5, r5c6<>3

I don't see what you were trying to do with the notation.

I do see an xy-chain:
(3=9)r3c6-(9=1)r3c1-(1=3)r6c1-(3=9)r4c1-(9=4)r4c3-(4=3)r4c5 => -3r3c5,r5c6


I was trying to do exactly what your chain is doing without showing the strong inference in each cell. If you're talking about (1=3=9)r364c1, that is something Ted showed me (although I easily could've misinterpreted).

This is the puzzle followed by Ted's comments:

Code: Select all
+--------------+----------+--------------+
| 15 8    1239 | 7  269 4 | 259 2356 359 |
| 6  29   4    | 29 5   3 | 8   7    1   |
| 7  2359 239  | 1  269 8 | 259 2356 4   |
+--------------+----------+--------------+
| 2  1    5    | 3  8   9 | 7   4    6   |
| 3  69   69   | 24 24  7 | 1   58   58  |
| 8  4    7    | 5  1   6 | 3   9    2   |
+--------------+----------+--------------+
| 9  56   16   | 8  3   2 | 4   15   7   |
| 14 23   8    | 49 7   5 | 6   123  39  |
| 45 7    23   | 6  49  1 | 259 238  389 |
+--------------+----------+--------------+


Your notation can not be normally reduced since you are changing digits at each node. However, I have adopted a shortcut used by Danny to compress the notation for a series of cells in a row/column that act as an ALS. Using this technique you would have

(9=2)r2c4-(2=9=6=5)r257c2-(5=1)r7c8-(1=23)r8c28-(3=9)r8c9-->r8c4<>9.

Note that I identify the rows in the order that they are used.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA


Return to Puzzles