- Code: Select all
*-----------*
|..6|9.8|2..|
|...|.6.|...|
|18.|.2.|.46|
|---+---+---|
|2.8|.7.|6.4|
|7.1|...|3.5|
|4.3|.8.|7.1|
|---+---+---|
|81.|.5.|.73|
|...|.3.|...|
|..5|7.4|8..|
*-----------*
Play/Print this puzzle online
*-----------*
|..6|9.8|2..|
|...|.6.|...|
|18.|.2.|.46|
|---+---+---|
|2.8|.7.|6.4|
|7.1|...|3.5|
|4.3|.8.|7.1|
|---+---+---|
|81.|.5.|.73|
|...|.3.|...|
|..5|7.4|8..|
*-----------*
+-------------------+-------------------+-------------------+
|#35 *34 6 | 9 14 8 | 2 #135 7 |
|#359 *2347 2479 | 145 6 157 |*159 #135 8 |
| 1 8 79 | 35 2 357 |*59 4 6 |
+-------------------+-------------------+-------------------+
| 2 5 8 | 13 7 13 | 6 9 4 |
| 7 69 1 | 246 49 269 | 3 8 5 |
| 4 69 3 | 56 8 569 | 7 2 1 |
+-------------------+-------------------+-------------------+
| 8 1 29 | 26 5 269 | 4 7 3 |
| 69 47 47 | 8 3 -129 |a15 156 29 |
| 369 b23 5 | 7 d19 4 | 8 -16 c29 |
+-------------------+-------------------+-------------------+
tlanglet wrote:AUR(35)r12c18[1r12c8=9r2c1]-(9=63)r89c1-(3=291)r9c295 => r9c8<>1
w-wing (29) => r8c1 <> 9; stte
tlanglet wrote:I also found the AUR(35) but used the internal SIS.
AUR(35)r12c18[1r12c8=9r2c1]-(9=63)r89c1-(3=291)r9c295 => r9c8<>1
I altered my notation of ALSs per the comments posted by DonM in yesterdays puzzle. Hopefully he will see this notation and comment.
after basics
+--------------------------------------------------------------+
| b35 34 6 | 9 14 8 | 2 a135 7 |
| b359 2347 2479 | 145 6 157 | 159 a135 8 |
| 1 8 79 | 35 2 357 | 59 4 6 |
|--------------------+--------------------+--------------------|
| 2 5 8 | 13 7 13 | 6 9 4 |
| 7 69 1 | 246 49 269 | 3 8 5 |
| 4 69 3 | 56 8 569 | 7 2 1 |
|--------------------+--------------------+--------------------|
| 8 1 29 | 26 5 269 | 4 7 3 |
| c69 47 47 | 8 3 129 | d15 d156 29 |
| 369 23 5 | 7 19 4 | 8 6-1 29 |
+--------------------------------------------------------------+
# 57 eliminations remain
(1=35)r12c8 -UR- (35=9)r12c1 - (9=6)r8c1 - (6=15)r8c78 => r9c8<>1
DonM wrote:tlanglet wrote:I also found the AUR(35) but used the internal SIS.
AUR(35)r12c18[1r12c8=9r2c1]-(9=63)r89c1-(3=291)r9c295 => r9c8<>1
I altered my notation of ALSs per the comments posted by DonM in yesterdays puzzle. Hopefully he will see this notation and comment.
Excellent! It shows the actual logic flow of the ALS. Incidentally, deadly patterns are an example of where it is particularly difficult to standardize notation, but fwiw, I prefer your presentation/use of the AUR above- it labels the AUR, shows where it is and then shows the relevant SIS in square brackets. It is extremely easy to follow.
*--------------------------------------------------------------------*
| 35 34 6 | 9 14 8 | 2 135 7 |
| 359 23479 2479 | 1345 6 1357 | 159 135 8 |
| 1 8 79 | 35 2 357 | 59 4 6 |
|----------------------+----------------------+----------------------|
| 2 5 8 | 13 7 13 | 6 9 4 |
| 7 *69 1 |#246 49 *269 | 3 8 5 |
| 4 *69 3 |#56 8 *569 | 7 2 1 |
|----------------------+----------------------+----------------------|
| 8 1 249 | 2-6 5 269 | 49 7 3 |
| 69 24679 2479 | 8 3 1269 | 1459 156 29 |
| 369 2369 5 | 7 19 4 | 8 16 29 |
*--------------------------------------------------------------------*
RW wrote:After the first singles:
- Code: Select all
*--------------------------------------------------------------------*
| 35 34 6 | 9 14 8 | 2 135 7 |
| 359 23479 2479 | 1345 6 1357 | 159 135 8 |
| 1 8 79 | 35 2 357 | 59 4 6 |
|----------------------+----------------------+----------------------|
| 2 5 8 | 13 7 13 | 6 9 4 |
| 7 *69 1 |#246 49 *269 | 3 8 5 |
| 4 *69 3 |#56 8 *569 | 7 2 1 |
|----------------------+----------------------+----------------------|
| 8 1 249 | 2-6 5 269 | 49 7 3 |
| 69 24679 2479 | 8 3 1269 | 1459 156 29 |
| 369 2369 5 | 7 19 4 | 8 16 29 |
*--------------------------------------------------------------------*
UR in r56c26 suggests r7c4<>6. I'll let you guys figure out the notation..
tlanglet wrote:DonM wrote:tlanglet wrote:I also found the AUR(35) but used the internal SIS.
AUR(35)r12c18[1r12c8=9r2c1]-(9=63)r89c1-(3=291)r9c295 => r9c8<>1
I altered my notation of ALSs per the comments posted by DonM in yesterdays puzzle. Hopefully he will see this notation and comment.
Excellent! It shows the actual logic flow of the ALS. Incidentally, deadly patterns are an example of where it is particularly difficult to standardize notation, but fwiw, I prefer your presentation/use of the AUR above- it labels the AUR, shows where it is and then shows the relevant SIS in square brackets. It is extremely easy to follow.
Don, thanks for your feedback. I agree that your notation better reflects the logic flow entering an ALS, but I find it lacking on the logic flow exiting the ALS. Here are some examples which I hope do a better job of expressing my views rather than poor verbiage.
1) AUR(35)r12c18[1r12c8=9r2c1]-(9=63)r89c1-(3=291)r9c295 => r9c8<>1
This is the notation I posted for this puzzle. I clearly states that the logic flow is to delete the 9 from the ALS, but does not explicitly state the resulting digit of interest provided by the ALS; is it a 3 or a 6. In my post, I ordered the ALS location information to implicitly indicate the resulting ALS digit of interest last but that would not be obvious to someone learning about ALSs and notations.
2) AUR(35)r12c18[1r12c8=9r2c1]-(69=3)r89c1-(329=1)r9c295 => r9c8<>1
This is the format I used previously, which is simply the reverse of the above example. It messes up the logic entering into the ALS and also relies on implicit location info to indicate the resulting ALS digit of interest, but it does explicitly identify the resulting ALS digit of interest.
Why not notate this in the fashion used for AURs?
3) AUR(35)r12c18[1r12c8=9r2c1]-ALS(369)r89c1[9r89c1=3r9c1]-ALS(1239)r9c259[3r9c2=1r9c5] => r9c8<>1
It is noticeable longer but also has the advantage of telling the learning community that they are dealing with an ALS.
Ted
ALS example
*-----------*
|.6.|5..|.1.|
|...|3..|..4|
|..8|.9.|2..|
|---+---+---|
|4.7|2..|...|
|.5.|.7.|.8.|
|...|..9|1.7|
|---+---+---|
|..3|.4.|6..|
|1..|..7|...|
|.8.|..5|.2.|
*-----------*
*--------------------------------------------------------------------*
| 2379 6 49 | 5 28 48 | 3789 1 389 |
| 259 179 159 | 3 1268 168 | 589 79 4 |
| 35 14 8 | 7 9 14 | 2 356 356 |
|----------------------+----------------------+----------------------|
| 4 A139 7 |-2 -1568 -1368 | 359 3569 3569 |
|A69 -5 A169 | 146 7 B36 | 349 8 2 |
| 8 23 26 | 46 56 9 | 1 3456 7 |
|----------------------+----------------------+----------------------|
| 59 79 3 | 18 4 2 | 6 579 18 |
| 1 249 24569 | 689 36 7 | 34589 3459 3589 |
| 679 8 469 | 169 136 5 | 3479 2 139 |
*--------------------------------------------------------------------*
A3=A(1&6&9)-B6=B3
Eureka notation
(3=1&6&9)r4c2,r5c13 - (6=3)r5c6