Vanhegan Fiendish February 23,2013

Post puzzles for others to solve here.

Vanhegan Fiendish February 23,2013

Postby ArkieTech » Mon Feb 25, 2013 3:45 am

Code: Select all
 *-----------*
 |37.|4.5|.91|
 |8..|.9.|..6|
 |...|163|...|
 |---+---+---|
 |.6.|.7.|.5.|
 |..8|...|1..|
 |.4.|.3.|.6.|
 |---+---+---|
 |...|329|...|
 |6..|.1.|..8|
 |25.|8.6|.13|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Vanhegan Fiendish February 23,2013

Postby pjb » Mon Feb 25, 2013 4:04 am

Code: Select all
3      7      6      | 4      8      5      | 2      9      1     
8      1      45     | 7      9      2      | 345    34     6     
459    29     2459   | 1      6      3      | 457    8      47     
---------------------+----------------------+---------------------
19     6      1239   | 29     7      18     | 348    5      249   
79     239    8      | 6      5      4      | 1     a37     279   
1579   4      12579  | 29     3      18     | 78     6      279   
---------------------+----------------------+---------------------
147    8      147    | 3      2      9      | 6     b47     5     
6     d39     349    | 5      1      7      |c49     2      8     
2      5      79     | 8      4      6      | 79     1      3


A little XY chain:

(3=7) r5c8 - (7=4) r7c8 - (4=9) r8c7 - (9=3) r8c2 => r5c2<> 3; stte

Phil

PS there is an uncommon type 3 DP at r46c49 with a 'naked pair' of 47 => r5c9 <> 7. This leads to a cascade of eliminations ending with a BUG+1 to finish
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Vanhegan Fiendish February 23,2013

Postby Leren » Mon Feb 25, 2013 9:02 am

Code: Select all
*--------------------------------------------------------------*
| 3     7     6      | 4     8     5      | 2     9     1      |
| 8     1     45     | 7     9     2      | 345   34    6      |
| 459   29    2459   | 1     6     3      | 457   8     47     |
|--------------------+--------------------+--------------------|
| 19    6     1239   | 29    7     18     | 348   5     249    |
|a79   a239   8      | 6     5     4      | 1     3-7  a279    |
| 1579  4     12579  | 29    3     18     | 78    6     279    |
|--------------------+--------------------+--------------------|
| 147   8     147    | 3     2     9      | 6    c47    5      |
| 6    b39    349    | 5     1     7      |c49    2     8      |
| 2     5     79     | 8     4     6      | 79    1     3      |
*--------------------------------------------------------------*


Just for something a bit different...

als xy-wing: (7=3) r129c5 - (3=9) r8c2 - (9=7) r7c8, r8c7 => r5c8 <> 7; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Vanhegan Fiendish February 23,2013

Postby ArkieTech » Mon Feb 25, 2013 1:15 pm

Still different :D

Code: Select all
 *--------------------------------------------------------------------*
 | 3      7      6      | 4      8      5      | 2      9      1      |
 | 8      1      45     | 7      9      2      | 345    34     6      |
 | 459    29     2459   | 1      6      3      | 457    8      47     |
 |----------------------+----------------------+----------------------|
 | 19     6      1239   | 29     7      18     | 348    5      249    |
 | 79     29-3   8      | 6      5      4      | 1     a37     279    |
 | 1579   4      12579  | 29     3      18     | 78     6      279    |
 |----------------------+----------------------+----------------------|
 | 147    8      147    | 3      2      9      | 6     b47     5      |
 | 6     c39     349    | 5      1      7      |c49     2      8      |
 | 2      5      79     | 8      4      6      | 79     1      3      |
 *--------------------------------------------------------------------*
als xy-wing
(3=7)r5c8-(7=4)r7c8-(4=3)r8c27 => -3r5c2; ste
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Vanhegan Fiendish February 23,2013

Postby tlanglet » Mon Feb 25, 2013 3:47 pm

My initial solution was the same as pjb, but before posting I looked for something different but all I found was an AXY-wing involving similar logic and I do not have the time to look further.

AXY-wing(49-3) with (34=5)r2c7 plus pincer transport
[(3=9)r8c2-(9=4)r8c7-(4=3)r2c7-r2c8=3r5c8=> r5c2<>3 ] = [5r2c7-(5=4)r2c3-r78c3=r7c1-(4=7)r7c8-(7=3)r5c8 => r5c2<>3] => r5c2<>3

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Vanhegan Fiendish February 23,2013

Postby tlanglet » Mon Feb 25, 2013 3:58 pm

pjb wrote:
Code: Select all
3      7      6      | 4      8      5      | 2      9      1     
8      1      45     | 7      9      2      | 345    34     6     
459    29     2459   | 1      6      3      | 457    8      47     
---------------------+----------------------+---------------------
19     6      1239   | 29     7      18     | 348    5      249   
79     239    8      | 6      5      4      | 1     a37     279   
1579   4      12579  | 29     3      18     | 78     6      279   
---------------------+----------------------+---------------------
147    8      147    | 3      2      9      | 6     b47     5     
6     d39     349    | 5      1      7      |c49     2      8     
2      5      79     | 8      4      6      | 79     1      3



PS there is an uncommon type 3 DP at r46c49 with a 'naked pair' of 47 => r5c9 <> 7. This leads to a cascade of eliminations ending with a BUG+1 to finish


pjb, I tried the xy-wing(34-7)r2c8,r5c8,r3c9 to delete 7r56c9 that resulted in six cells with three digits each.

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Vanhegan Fiendish February 23,2013

Postby daj95376 » Mon Feb 25, 2013 5:10 pm

pjb wrote:A little XY chain:

(3=7) r5c8 - (7=4) r7c8 - (4=9) r8c7 - (9=3) r8c2 => r5c2<> 3; stte

Phil,

FYI, the newly bastardized XY-Chain notation: (3=3)r57c8,r8c72 => r5c2<>3.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Vanhegan Fiendish February 23,2013

Postby DonM » Mon Feb 25, 2013 9:17 pm

daj95376 wrote:
pjb wrote:A little XY chain:

(3=7) r5c8 - (7=4) r7c8 - (4=9) r8c7 - (9=3) r8c2 => r5c2<> 3; stte

Phil,

FYI, the newly bastardized XY-Chain notation: (3=3)r57c8,r8c72 => r5c2<>3.


I don't know who came up with that or why, but any change in notation that makes it easier for the writer at the expense of clarity for the reader is IMO a step backward.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Vanhegan Fiendish February 23,2013

Postby pjb » Mon Feb 25, 2013 10:47 pm

Ted

I was looking for something a bit more interesting than the XY chain, and got a bit excited when I saw the type 3 DP, but it took a bit more than basic moves to get to the BUG+1, ie after the state you mention with 6 3-digit cells, it required a skyscraper of 4s at r3c17, r8c37 and X-Wing of 7s at r6c37, r9c37.

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Vanhegan Fiendish February 23,2013

Postby Luke » Mon Feb 25, 2013 11:15 pm

ArkieTech wrote:Still different :D

Code: Select all
 *--------------------------------------------------------------------*
 | 3      7      6      | 4      8      5      | 2      9      1      |
 | 8      1      45     | 7      9      2      | 345    34     6      |
 | 459    29     2459   | 1      6      3      | 457    8      47     |
 |----------------------+----------------------+----------------------|
 | 19     6      1239   | 29     7      18     | 348    5      249    |
 | 79     29-3   8      | 6      5      4      | 1     a37     279    |
 | 1579   4      12579  | 29     3      18     | 78     6      279    |
 |----------------------+----------------------+----------------------|
 | 147    8      147    | 3      2      9      | 6     b47     5      |
 | 6     c39     349    | 5      1      7      |c49     2      8      |
 | 2      5      79     | 8      4      6      | 79     1      3      |
 *--------------------------------------------------------------------*
als xy-wing
(3=7)r5c8-(7=4)r7c8-(4=3)r8c27 => -3r5c2; ste

An xy chain is an xy chain is an xy chain. If you're going to go als, why stop there?
(3=47)als:r57c8-(4=93)als:r8c27 ==>r5c2<>3 (als-xz :roll: )

@ Danny: Very efficient. You win! :lol:
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Re: Vanhegan Fiendish February 23,2013

Postby Marty R. » Tue Feb 26, 2013 12:04 am

pjb wrote:
Code: Select all
3      7      6      | 4      8      5      | 2      9      1     
8      1      45     | 7      9      2      | 345    34     6     
459    29     2459   | 1      6      3      | 457    8      47     
---------------------+----------------------+---------------------
19     6      1239   | 29     7      18     | 348    5      249   
79     239    8      | 6      5      4      | 1     a37     279   
1579   4      12579  | 29     3      18     | 78     6      279   
---------------------+----------------------+---------------------
147    8      147    | 3      2      9      | 6     b47     5     
6     d39     349    | 5      1      7      |c49     2      8     
2      5      79     | 8      4      6      | 79     1      3


A little XY chain:

(3=7) r5c8 - (7=4) r7c8 - (4=9) r8c7 - (9=3) r8c2 => r5c2<> 3; stte

Phil



Same, but started at r8c2.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Vanhegan Fiendish February 23,2013

Postby Marty R. » Tue Feb 26, 2013 12:14 am

Code: Select all
+-----------+---------+----------+
| 3  7  6   | 4  8 5  | 2  9  1  |
| 8  1  5   | 7  9 2  | 34 34 6  |
| 4  29 29  | 1  6 3  | 5  8  7  |
+-----------+---------+----------+
| 19 6  23  | 29 7 18 | 38 5  4  |
| 79 23 8   | 6  5 4  | 1  37 29 |
| 5  4  17  | 29 3 18 | 78 6  29 |
+-----------+---------+----------+
| 17 8  147 | 3  2 9  | 6  47 5  |
| 6  39 349 | 5  1 7  | 49 2  8  |
| 2  5  79  | 8  4 6  | 79 1  3  |
+-----------+---------+----------+

Play this puzzle online at the Daily Sudoku site

For what it's worth, I found this BUG+2 after playing the Skyscraper on 4 in c18.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA


Return to Puzzles