- Code: Select all
*-----------*
|...|...|...|
|.6.|189|.5.|
|9..|7.4|..1|
|---+---+---|
|.93|648|51.|
|...|...|...|
|.56|327|49.|
|---+---+---|
|7..|4.6|..2|
|.1.|872|.4.|
|...|...|...|
*-----------*
Play/Print this puzzle online
*-----------*
|...|...|...|
|.6.|189|.5.|
|9..|7.4|..1|
|---+---+---|
|.93|648|51.|
|...|...|...|
|.56|327|49.|
|---+---+---|
|7..|4.6|..2|
|.1.|872|.4.|
|...|...|...|
*-----------*
*-------------------------------------------------*
| 5 d478 1 | 2 6 3 | 789 78 49 |
|*34 6 c27 | 1 8 9 |b27 5 34 |
| 9 238 *28 | 7 5 4 |a2368 2368 1 |
|----------------+-------------+------------------|
| 2 9 3 | 6 4 8 | 5 1 7 |
|#48 478 #478 | 59 19 15 |a236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
|----------------+-------------+------------------|
| 7 38 5 | 4 19 6 | 19 38 2 |
| 36 1 9 | 8 7 2 |a36 4 5 |
|#468 248 #248 | 59 3 15 | 16789 678 69 |
*-------------------------------------------------*
*--------------------------------------------------------------------*
| 5 47-8 1 | 2 6 3 | 789 78 49 |
| 34 6 27 | 1 8 9 | 27 5 34 |
| 9 *238 *28 | 7 5 4 | 2368 2368 1 |
|----------------------+----------------------+----------------------|
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 | 236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
|----------------------+----------------------+----------------------|
| 7 *38 5 | 4 19 6 | 19 38 2 |
| 36 1 9 | 8 7 2 | 36 4 5 |
| 468 248 248 | 59 3 15 | 16789 678 69 |
*--------------------------------------------------------------------*
xyz-wing
(8=3)r7c2-(3=28)r3c23 => -8r1c2; lclste
+-------------+----------+---------------+
| 5 478 1 | 2 6 3 | 789 78 49 |
| 34 6 27 | 1 8 9 | 27 5 34 |
| 9 238 28 | 7 5 4 | 2368 2368 1 |
+-------------+----------+---------------+
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 | 236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
+-------------+----------+---------------+
| 7 38 5 | 4 19 6 | 19 38 2 |
| 36 1 9 | 8 7 2 | 36 4 5 |
| 468 248 248 | 59 3 15 | 16789 678 69 |
+-------------+----------+---------------+
*---------------------------------------------------------------------------------*
| 5 478 1 | 2 6 3 |b789 a78 49 |
| 34 6 27 | 1 8 9 |b27 5 34 |
| 9 238 28 | 7 5 4 |b2368 236-8 1 |
|--------------------------+--------------------------+---------------------------|
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 |b236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
|--------------------------+--------------------------+---------------------------|
| 7 38 5 | 4 9-1 6 |b19 38 2 |
| 36 1 9 | 8 7 2 |b36 4 5 |
| 468 248 248 | 59 3 15 | 78-1-6-9 678 69 |
*---------------------------------------------------------------------------------*
Leren wrote:
- Code: Select all
*---------------------------------------------------------------------------------*
| 5 478 1 | 2 6 3 |b789 a78 49 |
| 34 6 27 | 1 8 9 |b27 5 34 |
| 9 238 28 | 7 5 4 |b2368 236-8 1 |
|--------------------------+--------------------------+---------------------------|
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 |b236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
|--------------------------+--------------------------+---------------------------|
| 7 38 5 | 4 9-1 6 |b19 38 2 |
| 36 1 9 | 8 7 2 |b36 4 5 |
| 468 248 248 | 59 3 15 | 78-1-6-9 678 69 |
*---------------------------------------------------------------------------------*
Doubly linked als-xz rule r1c8 r123578c7 x = 7,8 = > r3c8 <> 8, r7c5 <> 1, r9c7 <> 1,6,9; stte
Leren
Marty's Sue de Coq ...
+---------------+------------+--------------------+
| 5 478 1 | 2 6 3 | 789 (78) 49 |
| 34 6 27 | 1 8 9 | 27 5 34 |
| 9 238 28 | 7 5 4 | 2368 236-8 1 |
+---------------+------------+--------------------+
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 | 236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
+---------------+------------+--------------------+
| 7 38 5 | 4 19 6 | 19 (38) 2 |
| 36 1 9 | 8 7 2 | (36) 4 5 |
| 468 248 248 | 59 3 15 | 1789-6 (678) 9-6 |
+---------------+------------+--------------------+
r1c8=7->r79c8.r8c7=368 or r1c8=8->r79c8.r8c7=367
:=> -8r1c3,-6r9c79
Leren's Sue de Coq ...
+---------------+------------+-------------------+
| 5 478 1 | 2 6 3 | 9-78 (78) 49 |
| 34 6 27 | 1 8 9 | (27) 5 34 |
| 9 238 28 | 7 5 4 | (2368) 236-8 1 |
+---------------+------------+-------------------+
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 | (236) 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
+---------------+------------+-------------------+
| 7 38 5 | 4 19 6 | 19 38 2 |
| 36 1 9 | 8 7 2 | (36) 4 5 |
| 468 248 248 | 59 3 15 | 1789-6 678 69 |
+---------------+------------+-------------------+
r1c8=7->r2358c7=2368 or r1c8=8->r2358c7=2367
:=> -78r1c7,-8r3c8,-6r9c7
*---------------------------------------------------------------------------------*
| 5 478 1 | 2 6 3 | 789 78 49 |
| 34 6 27 | 1 8 9 | 27 5 34 |
| 9 238 28 | 7 5 4 | 2368 2368 1 |
|--------------------------+--------------------------+---------------------------|
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 | 236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
|--------------------------+--------------------------+---------------------------|
| 7 38 5 | 4 9-1 6 | 19 38 2 |
| 36 1 9 | 8 7 2 | 36 4 5 |
| 468 248 248 | 59 3 15 | 16789 678 69 |
*---------------------------------------------------------------------------------*
David P Bird wrote:Expressing these column 7 box 3 interactions as 2-Sector Naked and Hidden Sets there are a variety of options:
- Code: Select all
*---------------------------------------------------------------------------------*
| 5 478 1 | 2 6 3 | 789 78 49 |
| 34 6 27 | 1 8 9 | 27 5 34 |
| 9 238 28 | 7 5 4 | 2368 2368 1 |
|--------------------------+--------------------------+---------------------------|
| 2 9 3 | 6 4 8 | 5 1 7 |
| 48 478 478 | 59 19 15 | 236 236 36 |
| 1 5 6 | 3 2 7 | 4 9 8 |
|--------------------------+--------------------------+---------------------------|
| 7 38 5 | 4 9-1 6 | 19 38 2 |
| 36 1 9 | 8 7 2 | 36 4 5 |
| 468 248 248 | 59 3 15 | 16789 678 69 |
*---------------------------------------------------------------------------------*
As before:
Multi-sector Naked Set:(12369)c7,(78)b3: 7 digits/constrained cells => r3c8 <> 8, r9c7 <> 169
Luke457 It's always curious to me that this approach (same as "disjoint subsets"?) only find certain eliminations by extrapolation. Leren's DL-als takes out (1)r7c5 directly. I suspect that carrying forward all SdQ eliminations will always take out those that the DL-als finds directly, but I don't know for sure.
eleven wrote:In my eyes the als, Sue de Coq, base/cover and ring interpretations are more of theoretical interest.
All you have to spot is a simple forcing chain:
r1c8=7->r9c7=7
r1c8=8->r9c7=8
The rest falls into place.
7r9c7=7r123c7-(7=8)r1c8-8r13c7=8r9c7 => r9c7<>169, and if you want r3c8<>8