Vanhegan extreme May 23, 2013

Post puzzles for others to solve here.

Vanhegan extreme May 23, 2013

Postby ArkieTech » Sat May 25, 2013 1:03 am

Code: Select all
 *-----------*
 |..2|1.5|7..|
 |.6.|.3.|.2.|
 |3..|...|..5|
 |---+---+---|
 |9..|876|..2|
 |.4.|.5.|.9.|
 |8..|941|..7|
 |---+---+---|
 |2..|...|..4|
 |.1.|.9.|.5.|
 |..9|4.3|2..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 2711
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Vanhegan extreme May 23, 2013

Postby Leren » Sat May 25, 2013 1:39 am

Code: Select all
*--------------------------------------------------------------*
| 4     9     2      | 1     8     5      | 7     36    36     |
|b15    6     158    | 7     3     4      |c18    2     9      |
| 3     78    178    | 6     2     9      | 148   148   5      |
|--------------------+--------------------+--------------------|
| 9     35    135    | 8     7     6      | 1345  14    2      |
|a167   4     167    | 3     5     2      |d168   9    e68-1   |
| 8     2     356    | 9     4     1      | 356   36    7      |
|--------------------+--------------------+--------------------|
| 2     378   3678   | 5     16    78     | 9     178   4      |
| 67    1     4      | 2     9     78     | 368   5     368    |
| 567   578   9      | 4     16    3      | 2     178   168    |
*--------------------------------------------------------------*

S Wing: (1) r5c1 = r2c1 - (1=8) r2c7 - r5c7 = r5c9 => -1 r5c9; stte

Leren
Leren
 
Posts: 2966
Joined: 03 June 2012

Re: Vanhegan extreme May 23, 2013

Postby 7b53 » Sat May 25, 2013 2:09 pm

(18=68)r5c79 = (6)r6c3 - r7c3 = (6-1)r7c5 = r7c8 = (no 1 column 9) => r5c79 = 18
what's the proper way to notate this ?

found an easier way...
(1)r4c3 = (6)r6c3 - r7c3 = (6-1)r7c5 = r7c8 - r9c9 = r5c9 => r5c13, r4c78 <> 1
7b53
2012 Supporter
 
Posts: 156
Joined: 01 January 2012
Location: New York

Re: Vanhegan extreme May 23, 2013

Postby JC Van Hay » Sat May 25, 2013 10:34 pm

7b53 wrote:(18=68)r5c79 = (6)r6c3 - r7c3 = (6-1)r7c5 = r7c8 = (no 1 column 9) => r5c79 = 18
what's the proper way to notate this ?

found an easier way...
(1)r4c3 = (6)r6c3 - r7c3 = (6-1)r7c5 = r7c8 - r9c9 = r5c9 => r5c13, r4c78 <> 1
Hmmm ... In fact : r5c79=16 or 18 or 68 ! Therefore, one could write :
Chain[6] : (18=6)r5c79-6r6c78=6r6c3-6r7c3=(6-1)r7c5=1r7c8-1r9c9=(18)r5c79 :=> r5c79=18
Or ... Chain[5] : 6r6c78=6r6c3-6r7c3=(6-1)r7c5=1r7c8-1r9c9=(1*-8)r5c9=8r5c7 :=> -6r5c79*(=18)
which is 1) easier to understand and 2) shorter than the "easier way" Chain[6].
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Vanhegan extreme May 23, 2013

Postby 7b53 » Sun May 26, 2013 4:15 pm

thanks JC
JC Van Hay wrote:Hmmm ... In fact : r5c79=16 or 18 or 68 ! Therefore, one could write :
Chain[6] : (18=6)r5c79-6r6c78=6r6c3-6r7c3=(6-1)r7c5=1r7c8-1r9c9=(18)r5c79 :=> r5c79=18
Or ... Chain[5] : 6r6c78=6r6c3-6r7c3=(6-1)r7c5=1r7c8-1r9c9=(1*-8)r5c9=8r5c7 :=> -6r5c79*(=18)
which is 1) easier to understand and 2) shorter than the "easier way" Chain[6].

supposed you meant there's actually 3 combinations.

little request...mind skipping a space in between each node... :D

7b53
7b53
2012 Supporter
 
Posts: 156
Joined: 01 January 2012
Location: New York

Re: Vanhegan extreme May 23, 2013

Postby Marty R. » Sun May 26, 2013 7:54 pm

Code: Select all
+--------------+---------+--------------+
| 4   9   2    | 1 8  5  | 7    36  36  |
| 15  6   158  | 7 3  4  | 18   2   9   |
| 3   78  178  | 6 2  9  | 148  148 5   |
+--------------+---------+--------------+
| 9   35  135  | 8 7  6  | 1345 14  2   |
| 167 4   167  | 3 5  2  | 168  9   168 |
| 8   2   356  | 9 4  1  | 356  36  7   |
+--------------+---------+--------------+
| 2   378 3678 | 5 16 78 | 9    178 4   |
| 67  1   4    | 2 9  78 | 368  5   368 |
| 567 578 9    | 4 16 3  | 2    178 168 |
+--------------+---------+--------------+

Play this puzzle online at the Daily Sudoku site

DP 14, r34c78. Either r3c78=8 or r4c7 is 35 pseudo cell. Common outcome: r79c8 both=78.
Marty R.
 
Posts: 1453
Joined: 23 October 2012
Location: Rochester, New York, USA


Return to Puzzles