*-----------*
|..1|.2.|..3|
|.4.|5..|..6|
|.2.|7..|..1|
|---+---+---|
|..6|.8.|...|
|..3|.1.|9..|
|...|.4.|5..|
|---+---+---|
|5..|..2|.7.|
|8..|..3|.4.|
|9..|.7.|1..|
*-----------*
*-----------*
|..1|.2.|.53|
|.4.|5.1|..6|
|.25|7..|..1|
|---+---+---|
|..6|.8.|...|
|..3|.1.|9..|
|...|.4.|5..|
|---+---+---|
|5.4|..2|.7.|
|8.7|.53|.4.|
|9.2|.7.|1.5|
*-----------*
|------------------------------------------------------|
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------+------------------+-------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------+------------------+-------------------|
| 5 136 4 | 1689 69 2 | 368 7 89 |
| 8 16 7 | 169 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
|------------------------------------------------------|
Shazbot wrote:not sure of the next step - suspect it'll be forcing chains, but I'm not too good with those so I'll let someone else volunteer....
*-----------------------------------------------------------------*
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------------+---------------------+---------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------------+---------------------+---------------------|
| 5 136 4 | 1689 69 2 | 368 7 89 |
| 8 16 7 | 169 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
*-----------------------------------------------------------------*
Candidates in r9c8 will force r8c2 to have only 1 as valid Candidates
r9c8=3: r9c8=3 => r9c2=6 => r8c2=1
r9c8=8: r9c8=8 => r7c9=9 => r8c9=2 => r8c7=6 => r8c2=1
Threfore r8c2=1
*-----------------------------------------------------------------*
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------------+---------------------+---------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------------+---------------------+---------------------|
| 5 36 4 | 1 69 2 | 368 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
*-----------------------------------------------------------------*
Eliminating 8 From r9c8 (Row 7 & Box 9 Box-line interaction)
*--------------------------------------------------------*
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
r1c4 Must only have 48 as valid Candidates (48 is a Hidden Double in Column 4)
*--------------------------------------------------------*
| 67 89 1 | 48 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Eliminating 2 From r5c9 (9 & 6 in r8c4 form an XY wing with 2 in r8c9 & r5c4)
*--------------------------------------------------------*
| 67 89 1 | 48 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Candidates in r2c7 will force r3c7 to have only 4 as valid Candidates
r2c7=2: r2c7=2 => r8c7=6 => r7c7=8 => r3c7=4
r2c7=7: r2c7=7 => r2c1=3 => r2c5=9 => r7c5=6 => r7c7=8 => r3c7=4
r2c7=8: r2c7=8 => r3c7=4
Threfore r3c7=4
*--------------------------------------------------------*
| 67 89 1 | 48 2 4689 | 78 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 689 | 4 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Candidates in r4c4 will force r1c1 to have only 6 as valid Candidates
r4c4=2: r4c4=2 => r5c4=6 => r8c4=9 => r7c5=6 => r7c7=8 => r1c7=7 => r1c1=6
r4c4=9: r4c4=9 => r8c4=6 => r7c5=9 => r2c5=3 => r2c1=7 => r1c1=6
Threfore r1c1=6
*--------------------------------------------------------*
| 6 89 1 | 48 2 489 | 7 5 3 |
| 7 4 89 | 5 3 1 | 28 289 6 |
| 3 2 5 | 7 69 689 | 4 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Candidates in r5c8 will force r5c1 to have only 4 as valid Candidates
r5c8=2: r5c8=2 => r5c1=4
r5c8=6: r5c8=6 => r5c4=2 => r5c1=4
r5c8=8: r5c8=8 => r3c8=9 => r3c5=6 => r7c5=9 => r8c4=6 => r5c4=2 => r5c1=4
Threfore r5c1=4
*--------------------------------------------------------*
| 6 89 1 | 48 2 489 | 7 5 3 |
| 7 4 89 | 5 3 1 | 28 289 6 |
| 3 2 5 | 7 69 689 | 4 89 1 |
|------------------+------------------+------------------|
| 12 579 6 | 29 8 579 | 3 12 4 |
| 4 578 3 | 26 1 567 | 9 268 78 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
r4c4 Must only have 9 as valid Candidates (12 is a Naked Double in Row 4)
|------------------------------------------------------|
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------+------------------+-------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------+------------------+-------------------|
| 5 136 4 | 1689 69 2 | 368 7 89 |
| 8 16 7 | 169 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
|------------------------------------------------------|
Jeff B wrote: This puzzle has changed since it was originally posted
Jeff B wrote:Carcul - I'm new at this and not sure I understand your notation - are you starting off saying that [R7C2] is 3? If so, how do you come to that conclusion?
Crazy Girl wrote:p.s.Jeff B wrote: This puzzle has changed since it was originally posted
how, all we've done (specifically Shazbot) is make it more readable and computer solver friendly, and in the blank cells listed the possible candidates according to the sudoku rules.
Carcul wrote:Hi Jeff B.Jeff B wrote:Carcul - I'm new at this and not sure I understand your notation - are you starting off saying that [R7C2] is 3? If so, how do you come to that conclusion?
Consider the following logic: r7c2=3 or r7c2 is not "3"; if r7c2 is "3" then obviously it is not "1"; if r7c2 is not "3", then r7c7=3 => r4c7=2 => r8c7=6 => r8c2=1 => r7c2 cannot be "1" - so, in any case, r7c2 cannot be 1.
Hope this will help.
Regards, Carcul
Jeff B wrote:I don't think you understood what I meant. I'm saying the puzzle in USA Today (on puzzles.usatoday.com) for Friday Jan. 13 is no longer the same puzzle.