*-----------*
|..1|.2.|..3|
|.4.|5..|..6|
|.2.|7..|..1|
|---+---+---|
|..6|.8.|...|
|..3|.1.|9..|
|...|.4.|5..|
|---+---+---|
|5..|..2|.7.|
|8..|..3|.4.|
|9..|.7.|1..|
*-----------*
*-----------*
|..1|.2.|.53|
|.4.|5.1|..6|
|.25|7..|..1|
|---+---+---|
|..6|.8.|...|
|..3|.1.|9..|
|...|.4.|5..|
|---+---+---|
|5.4|..2|.7.|
|8.7|.53|.4.|
|9.2|.7.|1.5|
*-----------*
|------------------------------------------------------|
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------+------------------+-------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------+------------------+-------------------|
| 5 136 4 | 1689 69 2 | 368 7 89 |
| 8 16 7 | 169 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
|------------------------------------------------------|
Shazbot wrote:not sure of the next step - suspect it'll be forcing chains, but I'm not too good with those so I'll let someone else volunteer....
*-----------------------------------------------------------------*
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------------+---------------------+---------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------------+---------------------+---------------------|
| 5 136 4 | 1689 69 2 | 368 7 89 |
| 8 16 7 | 169 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
*-----------------------------------------------------------------*
Candidates in r9c8 will force r8c2 to have only 1 as valid Candidates
r9c8=3: r9c8=3 => r9c2=6 => r8c2=1
r9c8=8: r9c8=8 => r7c9=9 => r8c9=2 => r8c7=6 => r8c2=1
Threfore r8c2=1
*-----------------------------------------------------------------*
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------------+---------------------+---------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------------+---------------------+---------------------|
| 5 36 4 | 1 69 2 | 368 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
*-----------------------------------------------------------------*
Eliminating 8 From r9c8 (Row 7 & Box 9 Box-line interaction)
*--------------------------------------------------------*
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
r1c4 Must only have 48 as valid Candidates (48 is a Hidden Double in Column 4)
*--------------------------------------------------------*
| 67 89 1 | 48 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Eliminating 2 From r5c9 (9 & 6 in r8c4 form an XY wing with 2 in r8c9 & r5c4)
*--------------------------------------------------------*
| 67 89 1 | 48 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Candidates in r2c7 will force r3c7 to have only 4 as valid Candidates
r2c7=2: r2c7=2 => r8c7=6 => r7c7=8 => r3c7=4
r2c7=7: r2c7=7 => r2c1=3 => r2c5=9 => r7c5=6 => r7c7=8 => r3c7=4
r2c7=8: r2c7=8 => r3c7=4
Threfore r3c7=4
*--------------------------------------------------------*
| 67 89 1 | 48 2 4689 | 78 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 689 | 4 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Candidates in r4c4 will force r1c1 to have only 6 as valid Candidates
r4c4=2: r4c4=2 => r5c4=6 => r8c4=9 => r7c5=6 => r7c7=8 => r1c7=7 => r1c1=6
r4c4=9: r4c4=9 => r8c4=6 => r7c5=9 => r2c5=3 => r2c1=7 => r1c1=6
Threfore r1c1=6
*--------------------------------------------------------*
| 6 89 1 | 48 2 489 | 7 5 3 |
| 7 4 89 | 5 3 1 | 28 289 6 |
| 3 2 5 | 7 69 689 | 4 89 1 |
|------------------+------------------+------------------|
| 124 579 6 | 29 8 579 | 3 12 247 |
| 24 578 3 | 26 1 567 | 9 268 478 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
Candidates in r5c8 will force r5c1 to have only 4 as valid Candidates
r5c8=2: r5c8=2 => r5c1=4
r5c8=6: r5c8=6 => r5c4=2 => r5c1=4
r5c8=8: r5c8=8 => r3c8=9 => r3c5=6 => r7c5=9 => r8c4=6 => r5c4=2 => r5c1=4
Threfore r5c1=4
*--------------------------------------------------------*
| 6 89 1 | 48 2 489 | 7 5 3 |
| 7 4 89 | 5 3 1 | 28 289 6 |
| 3 2 5 | 7 69 689 | 4 89 1 |
|------------------+------------------+------------------|
| 12 579 6 | 29 8 579 | 3 12 4 |
| 4 578 3 | 26 1 567 | 9 268 78 |
| 12 789 89 | 3 4 679 | 5 1268 278 |
|------------------+------------------+------------------|
| 5 3 4 | 1 69 2 | 68 7 89 |
| 8 1 7 | 69 5 3 | 26 4 29 |
| 9 6 2 | 48 7 48 | 1 3 5 |
*--------------------------------------------------------*
r4c4 Must only have 9 as valid Candidates (12 is a Naked Double in Row 4)
|------------------------------------------------------|
| 67 89 1 | 4689 2 4689 | 478 5 3 |
| 37 4 89 | 5 39 1 | 278 289 6 |
| 36 2 5 | 7 369 4689 | 48 89 1 |
|---------------+------------------+-------------------|
| 124 579 6 | 239 8 579 | 23 123 247 |
| 24 578 3 | 26 1 567 | 9 268 2478 |
| 12 789 89 | 2369 4 679 | 5 12368 278 |
|---------------+------------------+-------------------|
| 5 136 4 | 1689 69 2 | 368 7 89 |
| 8 16 7 | 169 5 3 | 26 4 29 |
| 9 36 2 | 468 7 468 | 1 38 5 |
|------------------------------------------------------|
Jeff B wrote: This puzzle has changed since it was originally posted
Jeff B wrote:Carcul - I'm new at this and not sure I understand your notation - are you starting off saying that [R7C2] is 3? If so, how do you come to that conclusion?
Crazy Girl wrote:p.s.Jeff B wrote: This puzzle has changed since it was originally posted
how , all we've done (specifically Shazbot) is make it more readable and computer solver friendly, and in the blank cells listed the possible candidates according to the sudoku rules.
Carcul wrote:Hi Jeff B.Jeff B wrote:Carcul - I'm new at this and not sure I understand your notation - are you starting off saying that [R7C2] is 3? If so, how do you come to that conclusion?
Consider the following logic: r7c2=3 or r7c2 is not "3"; if r7c2 is "3" then obviously it is not "1"; if r7c2 is not "3", then r7c7=3 => r4c7=2 => r8c7=6 => r8c2=1 => r7c2 cannot be "1" - so, in any case, r7c2 cannot be 1.
Hope this will help.
Regards, Carcul
Jeff B wrote:I don't think you understood what I meant. I'm saying the puzzle in USA Today (on puzzles.usatoday.com) for Friday Jan. 13 is no longer the same puzzle.