.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 123 12345 9 ! 125 8 123 ! 7 126 1246 !
! 12378 12347 128 ! 6 123 9 ! 14 5 124 !
! 6 125 12 ! 125 7 4 ! 3 8 9 !
+-------------------+-------------------+-------------------+
! 128 9 128 ! 3 12 5 ! 146 1267 12467 !
! 5 123 7 ! 12 4 6 ! 189 1239 128 !
! 123 6 4 ! 8 9 7 ! 15 123 125 !
+-------------------+-------------------+-------------------+
! 4 17 6 ! 179 135 138 ! 2 179 1578 !
! 1279 8 5 ! 4 126 12 ! 169 1679 3 !
! 1279 127 3 ! 1279 1256 128 ! 15689 4 15678 !
+-------------------+-------------------+-------------------+
158 candidates.
1) Simplest-first solution, using only 4 elementary rules:hidden-pairs-in-a-column: c4{n7 n9}{r7 r9} ==> r9c4≠2, r9c4≠1, r7c4≠1
naked-triplets-in-a-row: r7{c2 c4 c8}{n1 n7 n9} ==> r7c9≠7, r7c9≠1, r7c6≠1, r7c5≠1
naked-triplets-in-a-row: r4{c1 c3 c5}{n2 n8 n1} ==> r4c9≠2, r4c9≠1, r4c8≠2, r4c8≠1, r4c7≠1
biv-chain[3]: r8n7{c8 c1} - b7n9{r8c1 r9c1} - r9c4{n9 n7} ==> r9c9≠7
stte
2) 2-step solution, with 2 z-chains[3] (and no undeclared Pairs):z-chain[3]: r3n2{c2 c4} - b5n2{r5c4 r4c5} - c3n2{r4 .} ==> r1c1≠2, r2c2≠2, r2c1≠2, r1c2≠2........with z-candidates = n1r2c3 n1r3c3 n1r3c2
z-chain[3]: r3n1{c2 c4} - b5n1{r5c4 r4c5} - c3n1{r4 .} ==> r1c1≠1, r2c2≠1, r2c1≠1, r1c2≠1.......with z-candidates = n2r2c3 n2r3c3 n2r3c2
stte