Two-stepper

Post puzzles for others to solve here.

Two-stepper

Postby SpAce » Wed May 22, 2019 4:07 am

Code: Select all
..697..2.....51..6.7.23..59...427.............41.9327.....4..935...6......2......

One of the hardest puzzles I've seen in a printed publication. Took me two moves but you're free to beat that. More is acceptable too.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Two-stepper

Postby Cenoman » Wed May 22, 2019 10:24 pm

Two steps
Code: Select all
 +--------------------------+-------------------+-----------------------+
 | a138     5       6       |  9     7    4     | A138     2     x18    |
 |  2349    239     349     |  8     5    1     |  7      B34     6     |
 |  148     7       48      |  2     3    6     |  148     5      9     |
 +--------------------------+-------------------+-----------------------+
 |  3689    3689   z3589    |  4     2    7     |  13689   1368  y158   |
 | c23679   2369   d379-5   | C156  C18  C58    |  369    C36     4     |
 | b68      4       1       |  56    9    3     |  2       7      58    |
 +--------------------------+-------------------+-----------------------+
 | b678     168     78      |  157   4    2     |  1568    9      3     |
 |  5       1389    34789   |  137   6    89    |  148     148    2     |
 |  34689   13689   2       |  135   18   589   |  14568   1468   7     |
 +--------------------------+-------------------+-----------------------+

1. Kraken row (8)r1c179
(8)r1c1 - (86=7)r67c1 - r5c1 = (7)r5c3
(8-3)r1c7 = r2c8 - (3168=5)r5c4568
(8-1)r1c9 = (1-5)r4c9 = (5)r4c3
=>-5r5c3; 13 placements & basics

Code: Select all
 +--------------------+------------------+----------------------+
 | C13   5      6     |  9    7    4     |  138     2      18   |
 |  2   B39     349   |  8    5    1     |  7       34     6    |
 |  14   7      8     |  2    3    6     |  14      5      9    |
 +--------------------+------------------+----------------------+
 | D3-9  6      5     |  4    2    7     |  1389    138    18   |
 |  7    2     z39    |  15   18   58    | y369     36     4    |
 |  8    4      1     |  6    9    3     |  2       7      5    |
 +--------------------+------------------+----------------------+
 |  6    18     7     |  15   4    2     |  158     9      3    |
 |  5    1389   349   |  7    6    89    |  148     148    2    |
 | a49  A189    2     |  3    18  x589   | y14568   1468   7    |
 +--------------------+------------------+----------------------+

2. Kraken row (9)r9c126
(9)r9c1
(9)r9c2 - (9=3)r2c2 - r1c1 = (3)r4c1
(9-5)r9c6 = (56-9)r59c7 = (9)r5c3
=>-9r4c1; ste

... but the true challenge is one step :x :lol: :evil:
Code: Select all
 +--------------------------+-------------------+-----------------------+
 |  138     5       6       |  9     7    4     |  138     2      18    |
 |  2349    239     349     |  8     5    1     |  7       34     6     |
 |  148     7       48      |  2     3    6     |  148     5      9     |
 +--------------------------+-------------------+-----------------------+
 |  3689    3689    3589    |  4     2    7     |  13689   1368   158   |
 |  23679   2369    3579    |  156   18   58    |  369     36     4     |
 |  68      4       1       |  56    9    3     |  2       7      58    |
 +--------------------------+-------------------+-----------------------+
 |  678     168     78      |  157   4    2     |  1568    9      3     |
 |  5       1389    34789   |  137   6    89    |  148     148    2     |
 |  34689   13689   2       |  135   18   589   |  14568   1468   7     |
 +--------------------------+-------------------+-----------------------+

Multi-kraken... No tags. Inferences from each kraken is colored the same, at the last line of the kraken, and at the place where it is chained.
Of course, computer generated...

Kraken column (4)r238c3
(4)r2c3 - (4=3)r2c8 - (3=6)r5c8 - (6)r5c4
(4-8)r3c3 = r13c1 - (86=7)r67c1 - (7=2396)r5c1278 - (6)r5c4
(4)r8c3
=> (6)r5c4 => (4)r8c3

Kraken cell (239)r2c2
(2)r2c2 - r5c2 = (2-7)r5c1 = r5c3 - (7=8)r7c3 - (8=4)r3c3 - (4)r3c7
(3)r2c2 - (3=4)r2c8 - (4)r3c7
(9)r2c2
=> (4)r3c7 => (9)r2c2

Kraken cell (13689)r9c2
(1)r9c2 - (18=9)b8p68 - (9)r9c6
(3)r9c2 - r9c4 = (3-7)r8c4 = r7c4 - (7=8)r7c3 - r3c3 = r13c1 - (8=6)r6c1 - r6c4 = (6-1)r5c4 = r5c5 - (18=9)b8p68 - (9)r9c6
(6)r9c2 - (67=8)r7c13 - r789c2 = r4c2 - (8=6)r6c1 - r6c4 = (6-1)r5c4 = r5c5 - (18=9)b8p68 - (9)r9c6
(9)r9c2 - (9)r9c6
(8)r9c2
=> (9)r9c6 => (8)r9c2


Kraken column (4)r238c3
(4)r2c3 - (4=3)r2c8 - (314=8)r138c7 - (8)r7c7
(4-8)r3c3 = r13c1 - r6c1 = r6c9 - r4c8 = (8)r89c8 - (8)r7c7
(4)r8c3
=> (8)r7c7 => (4)r8c3

Kraken row (9)r9c126
(9)r9c1 - (4)r9c1
(9)r9c6 => (8)r9c2 - r7c123 = r7c7 => (4)r8c3 - (4)r9c1
(9)r9c2
=> - (9)r9c2 => - (4)r9c1

Kraken row (4)r3c137
(4)r3c1 - (4)r9c1
(4-8)r3c3 = r13c1 - (8=6)r6c1 - r6c4 = r5c4 => (4)r8c3 - (4)r9c1
(4)r3c7 => (9)r2c2 - r9c2 => - (4)r9c1
=> -4 r9c1; ste

This could be represented in a BTM (Block Triangular Matrix) 35x35 (count no guaranteed !)
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: Two-stepper

Postby SpAce » Thu May 23, 2019 2:07 am

That's awesome, Cenoman!

Cenoman wrote:Two steps

Even that beats me, because your solution made me notice that I'd screwed up with mine!! It seems that I never had a two-step solution, or a solution at all actually!

1. Kraken row (8)r1c179 =>-5r5c3; 13 placements & basics

Yep, that works nicely. I had a different first step with fewer placements, but for some unknown reason (a misclick probably) I'd ended up with the same resulting grid as yours when I started working on the second step. So, there's a clear gap between my original first and second steps, and I need to change one or the other to get to two working steps (or put something in between them for a three-stepper, which I did for now). An embarrassing but interesting mistake! Glad I at least caught it before someone else.

Here's my original first step anyway:

Code: Select all
.-------------------------.----------------.------------------.
|    13-8    5      6     |  9    7    4   | 138    2     18  |
|    2349    239    349   |  8    5    1   | 7      34    6   |
|    14-8    7      48    |  2    3    6   | 148    5     9   |
:-------------------------+----------------+------------------:
|    369-8   3689   3589  |  4    2    7   | 13689  1368  158 |
|   c23679   2369  c3579  | b156  18  b58  | 369    36    4   |
| ad(6[8])   4      1     | a56   9    3   | 2      7     58  |
:-------------------------+----------------+------------------:
|  d(68)7    168    78    |  157  4    2   | 1568   9     3   |
|    5       1389   34789 |  137  6    89  | 148    148   2   |
|    3469-8  13689  2     |  135  18   589 | 14568  1468  7   |
'-------------------------'----------------'------------------'

Step 1: (8=65)r6c14 - r5c46 = (57)r5c31 - (7=68) => -8 r1349c1 (=> 7 placements)

So... after that I'd mistakenly ended up with your grid state and thought I had a two-step solution. Here's a quick fix with an added middle step (until I figure out something else):

Code: Select all
.------------------.---------------.---------------------.
|  13    5     6   |  9    7   4   |  138     2    e1(8) |
|  2     39    349 |  8    5   1   |  7      e34    6    |
|  14    7     8   |  2    3   6   | e14      5     9    |
:------------------+---------------+---------------------:
|  39    68    359 |  4    2   7   |  13689   1368  158  |
|  7     2     359 | c156  18  58  |  369    d36    4    |
| a6[8]  4     1   | b56   9   3   |  2       7     5-8  |
:------------------+---------------+---------------------:
|  68    168   7   |  15   4   2   |  1568    9     3    |
|  5     1389  349 |  7    6   89  |  148     148   2    |
|  49    1689  2   |  3    18  589 |  14568   1468  7    |
'------------------'---------------'---------------------'

Step 2 (added): (8=6)r6c1 - r6c4 = r5c4 - (6=3)r5c8 - (3=418)b3p573 => -8 r6c9 (=> 6 placements)

2. Kraken row (9)r9c126 =>-9r4c1; ste

That also works nicely. My (now third) step for the same grid state (which I hadn't originally earned):

Code: Select all
.--------------------.---------------.-------------------.
|  13  5       6     | 9   7    4    |   138    2     18 |
|  2   39      349   | 8   5    1    |   7      34    6  |
|  14  7       8     | 2   3    6    |   14     5     9  |
:--------------------+---------------+-------------------:
| b39  6       5     | 4   2    7    |  c1389   138   18 |
|  7   2    ef(3)9   | 15  18   58   |  d369    36    4  |
|  8   4       1     | 6   9    3    |   2      7     5  |
:--------------------+---------------+-------------------:
|  6   18      7     | 15  4    2    |   158    9     3  |
|  5   1389  a[4]-39 | 7   6   f8(9) |   148    148   2  |
| b49  189     2     | 3   18  f589  | de14568  1468  7  |
'--------------------'---------------'-------------------'

Step 3: (4)r8c3 = (49)r94c1 - r4c7 = (96)r59c7 - (9|5)r5c3,r9c7 = (359)r5c3,r98c6 => -39 r8c3; stte

Let's see if I'll bother looking for a real two-step solution after this educating failure :) (This wouldn't have happened if I'd kept solving it on paper as planned. I switched to Hodoku once I noticed that the puzzle was much harder than expected, because coloring is so much easier with it.)

[Added. Here's a two-stepper using my original first step and a new second step:

Step 1 (original): (8=65)r6c14 - r5c46 = (57)r5c31 - (7=68) => -8 r1349c1 (=> 7 placements)


Code: Select all
.----------------------.----------------.-------------------.
|    1-3    5      6   |  9    7    4   |  138    2     18  |
|    2    k(3)9   k349 |  8    5    1   |  7      34    6   |
|    14     7      8   |  2    3    6   |  14     5     9   |
:----------------------+----------------+-------------------:
| al(3)9   d68    l359 |  4    2    7   | c13689  1368  158 |
|    7      2    al359 |  156  18  f58  | b369    36    4   |
|   e68     4      1   | e56   9    3   |  2      7     58  |
:----------------------+----------------+-------------------:
|   d68     168    7   |  15   4    2   | c568    9     3   |
|    5      1389  j349 |  7    6  fI89  |  148    148   2   |
|    49     1689   2   |  3    18  H589 | G14568  1468  7   |
'----------------------'----------------'-------------------'

Step 2 (new): Double Kraken 6c7 & 9c3

Code: Select all
               (6)r47c7 - r4c2&r7c1 = (65)r6c14 - (5=89)r58c6 -     (93)r2c32
               ||                                               \   ||   
(3,9)b4p16 = (9-6)r5c7                                            - (9)r8c3
               ||                                               /   ||
               (6-5)r9c7 = (59)r98c6 --------------------------     (9,3)b4p361

=> -3 r1c1; stte

]
[Added 2. Here's another two-stepper with a new first step and my original last step:

Code: Select all
.-----------------------.-----------------.---------------------.
|  f138    5      6     |  9     7    4   |  138     2    h1(8) |
|   2349   239    349   |  8     5    1   |  7     fg34    6    |
|  f148    7     g48    |  2     3    6   | g148     5     9    |
:-----------------------+-----------------+---------------------:
|   3689   3689   3589  |  4     2    7   |  13689   1368  158  |
|  c23679  2369  c3579  | c156  c18  c58  |  369   de36    4    |
| ae6[8]   4      1     | b56    9    3   |  2       7     5-8  |
:-----------------------+-----------------+---------------------:
| de678    168    78    |  157   4    2   |  1568    9     3    |
|   5      1389   34789 |  137   6    89  |  148     148   2    |
|   34689  13689  2     |  135   18   589 |  14568   1468  7    |
'-----------------------'-----------------'---------------------'

Step 1 (new): (8=6)r6c1 - r6c4 = (18657)r5c65431 - (6)r5c8|(7)r7c1 = (3)r5c8,(68)r76c1 - (3)r2c8|(8)r13c1 = (481)r2c8,r3c37 - (1=8)r1c9
=> -8 r6c9 (=> 13 placements)

Step 2 (original): (4)r8c3 = (49)r94c1 - r4c7 = (96)r59c7 - (9|5)r5c3,r9c7 = (359)r5c3,r98c6 => -39 r8c3; stte
]


... but the true challenge is one step :x :lol: :evil:

Wow... that's something else! I didn't really believe anyone would come up with a one-stepper, but I'm glad that my lack of faith was misplaced :) I can't quite fathom how that was found even with computer help. That's a very interesting and impressive piece of logic! It'll take some time to study it.
Last edited by SpAce on Thu May 23, 2019 9:13 pm, edited 2 times in total.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Two-stepper

Postby Leren » Thu May 23, 2019 3:40 am

Not a solution but a couple of observations.

1. stte opportunities exist at 1 r3c1 & 4 r9c1. I suspect that proving either of these would be problematic (for me).

2. There is a relatively straightforward move that clears the decks quit a bit.

Code: Select all
*------------------------------------------------------*
|b138     5      6      | 9    7  4   | 138   2    18  |
|b2349   b239   b349    | 8    5  1   | 7     34   6   |
|b148     7     c48     | 2    3  6   | 148   5    9   |
|-----------------------+-------------+----------------|
| 39-68   3689   359-8  | 4    2  7   | 13689 1368 158 |
| 2379-6  2369   3579   | 156  18 58  | 369   36   4   |
|a68      4      1      | 56   9  3   | 2     7    58  |
|-----------------------+-------------+----------------|
|a678     168   c78     | 15-7 4  2   | 1568  9    3   |
| 5       1389   349-78 | 137  6  89  | 148   148  2   |
| 349-68  13689  2      | 135  18 589 | 14568 1468 7   |
*------------------------------------------------------*

ALS XY Wing Loop: (7=8) r67c1 - (8=4) r1c1, r2c123, r3c1 - (4=7) r37c3 => - 68 r4c1, - 8 r4c3, - 6 r5c1, - 7 r7c4, - 78 r8c3, - 68 r9c1

And the second step is : haven't found it yet.

Leren
Leren
 
Posts: 5118
Joined: 03 June 2012

Re: Two-stepper

Postby SpAce » Thu May 23, 2019 1:52 pm

Leren wrote:2. There is a relatively straightforward move that clears the decks quit a bit.

ALS XY Wing Loop: (7=8) r67c1 - (8=4) r1c1, r2c123, r3c1 - (4=7) r37c3 => - 68 r4c1, - 8 r4c3, - 6 r5c1, - 7 r7c4, - 78 r8c3, - 68 r9c1

Yes, it's a nice move! Too bad I didn't see it. However, despite the additional immediate eliminations, the end result (after basics) is the same as that of my first step (7 placements). Cenoman's first kraken is still the king with its 13 placements.

A couple of stylistic notes. When writing loops with ALS nodes it's essential to include the bystander digits. In normal chains it's technically correct to skip them (although I don't like that then either), but with loops it's a really bad style. As written, your loop doesn't justify the eliminations resulting from the locked bystanders because they're not listed. I would write it:

(7=6'8)r76c1 - (8=1239'4)b1p17456 - (4=8'7)r37c3 - loop => -6 r459c1, -8 r1349c1,r48c3, -7 r7c4,r8c3

That makes it easy to see which digits are used for the weak links and which ones are the locked bystanders, both kinds having their own eliminations.

I would also simplify it a bit, because the large ALS node in box 1 is an unnecessary complication:

(7=6'8)r76c1 - r13c1 = (8'7)r37c3 - loop => -6 r459c1, -8 r1349c1,r48c3, -7 r7c4,r8c3

Lastly:

(8=4) r1c1, r2c123, r3c1

I'd prefer the bXpY notation because it's both shorter and clearer. The comma notation implies true split-nodes in different houses, but here everything is in the same box. If you insist on doing that, why not simply: "r13c1,r2c123" or "r123c1,r2c23"?

And the second step is : haven't found it yet.

I just did (it's now in the edited version of my previous post). It obviously works for your first step too, assuming I avoided mistakes this time. Please report if you find something else!
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Two-stepper

Postby Wecoc » Fri May 24, 2019 12:45 am

Code: Select all
+-------------------------------------------------+
|   138     5     6 |   9  7   4 |   138    2  18 |
|  2349   239   349 |   8  5   1 |     7   34   6 |
|   148     7    48 |   2  3   6 |   148    5   9 |
+-------------------------------------------------+
|  3689  3689  3589 |   4  2   7 | 13689 1368 158 |
| 23679  2369  3579 | 156 18  58 |   369   36   4 |
|    68     4     1 |  56  9   3 |     2    7  58 |
+-------------------------------------------------+
|   678   168    78 | 157  4   2 |  1568    9   3 |
|     5  1389 34789 | 137  6  89 |   148  148   2 |
| 34689 13689     2 | 135 18 589 | 14568 1468   7 |
+-------------------------------------------------+

r8c6 (89) can't be 8 because it forces a 3 in r2c8 and a 6 in r9c8, therefore r5c8 would be empty
r1c9 (18) eliminates candidate 8 both in r3c1 and r8c3
r9c6 (58) can only be 5, otherwise results in a 4 both in r3c7 and r8c7
r5c4 (56) can't be 6 because it forces a 1 in r3c7 and an 8 in r6c9, therefore r1c9 would be empty
r1c1 (13) can't be 3 because it forces a 3 in r8c2 and a 4 in r9c1, therefore r8c3 would be empty
From there only singles till the end
Wecoc
 
Posts: 76
Joined: 08 April 2019
Location: Girona, Catalonia

Re: Two-stepper

Postby SpAce » Fri May 24, 2019 1:04 am

Cenoman wrote:... but the true challenge is one step :x :lol: :evil:
Multi-kraken... No tags. Inferences from each kraken is colored the same, at the last line of the kraken, and at the place where it is chained.

Hi Cenoman! Does this network diagram depict your logic accurately?

Code: Select all
@(4)r3c1                            @(4)r8c3
 ||                                  ||
 ||              (6=34)r52c8 ------- (4)r2c3
 ||              /                   ||
 (4-8)r3c3 =*= (6)r5c4               ||
 ||              \                   ||
 ||              (6=3927)r5c8721 -*- (4)r3c3
 ||
 ||
 ||                           @(9)r9c1                                                         @(4)r8c3
 ||                            ||                                                               ||
 ||  (4=87)r37c3 -*- (2)r2c2   ||               ------ (1)r9c2              (8=413)r138c7 --*-- (4)r2c3
 ||  /               ||        ||             /        ||                   /                   ||
 (4)r3c7             (9)r2c2 - (9)r9c2   (9=81)b8p68   (8)r9c2 - r7c123 = (8)r7c7               ||
     \               ||        ||       /     \        ||                   \                   ||
     (4=3)r2c8 ----- (3)r2c2   (9)r9c6 -       \ --*-- (3)r9c2              (8)r89c8 = r4c8 -*- (4)r3c3
                                        \       \      ||
                                         \        -*-- (6)r9c2
                                          \            ||
                                            ---------- (9)r9c2

<=> (4r3c1 | 4r8c3 | 9r9c1) => -4 r9c1; stte

('*' implies an omitted single-threaded chain fragment)


This could be represented in a BTM (Block Triangular Matrix) 35x35 (count no guaranteed !)

I haven't tried to write a matrix, but it's easy to see that it must be (at least) a BTM because there's no binary starting point (all end-points lie in 3-SISs). Perhaps this could be a good exercise for that?

Edit: fixed notational mistakes (two non-alternating links) thanks to Cenoman.
Last edited by SpAce on Fri May 24, 2019 4:54 pm, edited 1 time in total.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Two-stepper

Postby SpAce » Fri May 24, 2019 2:22 am

Wecoc wrote:r8c6 (89) can't be 8 because it forces a 3 in r2c8 and a 6 in r9c8, therefore r5c8 would be empty
r1c9 (18) eliminates candidate 8 both in r3c1 and r8c3
r9c6 (58) can only be 5, otherwise results in a 4 both in r3c7 and r8c7
r5c4 (56) can't be 6 because it forces a 1 in r3c7 and an 8 in r6c9, therefore r1c9 would be empty
r1c1 (13) can't be 3 because it forces a 3 in r8c2 and a 4 in r9c1, therefore r8c3 would be empty
From there only singles till the end

Hi Wecoc! Thanks for participating. Sure, that would work (I assume, I haven't checked except the first step). However, randomly applied and most likely computer-executed T&E is not exactly the kind of solution we're looking for :) Could you represent any of those eliminations as a detailed step? I bet not. Your first elimination is not only extremely tedious (and low strategic value) as a T&E step, but practically impossible to prove more elegantly (except by Cenoman). Here's how Hodoku would do it:

Hodoku net image: Show
hodoku-net.png
hodoku-net.png (115.36 KiB) Viewed 597 times

Hodoku output puke: Show
Hodoku wrote:Forcing Net Verity => r8c6<>8
r9c2=1 r9c5<>1 r9c5=8 r8c6<>8
r9c2=3 (r8c2<>3) r8c3<>3 r8c4=3 r8c4<>7 r8c3=7 r7c3<>7 r7c3=8 (r7c2<>8) (r8c2<>8) r9c2<>8 r4c2=8 r6c1<>8 r6c1=6 r6c4<>6 r6c4=5 r5c6<>5 r5c6=8 r8c6<>8
r9c2=6 (UNKNOWN ALS<>6 r8c2<>8) (r7c1<>6) (r7c1<>6) r7c2<>6 r7c7=6 r7c7<>5 r7c4=5 (r7c4<>1 r7c2=1 r7c2<>8) r6c4<>5 r6c4=6 r6c1<>6 r6c1=8 r7c1<>8 r7c1=7 r7c3<>7 r7c3=8 r9c2<>8 r4c2=8 r6c1<>8 r6c1=6 r6c4<>6 r6c4=5 r5c6<>5 r5c6=8 r8c6<>8
r9c2=8 (r7c3<>8 r7c7=8 r3c7<>8 r1c9=8 r1c1<>8) (r7c3<>8 r7c3=7 r7c1<>7 r7c1=6 r5c1<>6) (r7c3<>8 r7c3=7 r5c3<>7 r5c1=7 r5c1<>2 r5c2=2 r5c2<>6) (r9c2<>6) (r7c3<>8 r7c3=7 r7c1<>7 r7c1=6 r9c1<>6) (r7c3<>8 r7c3=7 r7c4<>7) r9c5<>8 r9c5=1 (r5c5<>1 r5c4=1 r5c4<>6) r7c4<>1 r7c4=5 (r9c4<>5) r9c6<>5 r9c7=5 r9c7<>6 r9c8=6 (r9c8<>4 r2c8=4 r2c3<>4) r5c8<>6 (r5c8=3 r5c3<>3 r5c3=9 r8c3<>9) r5c7=6 r5c4<>6 r6c4=6 r6c1<>6 r6c1=8 r3c1<>8 r3c3=8 r3c3<>4 r8c3=4 (r8c3<>3) r8c3<>7 r8c4=7 r8c4<>3 r8c2=3 r8c2<>9 r8c6=9 r8c6<>8
r9c2=9 (r8c2<>9) r8c3<>9 r8c6=9 r8c6<>8]

I haven't tried to check if that even makes sense, but I bet it doesn't as is often the case with complex Hodoku nets (its chains sometimes make weird jumps for no apparent reason). The "UNKNOWN ALS" (I haven't seen that before!) is also a hint that its logic is probably messed up.

I suggest you learn the ways of the Force so you don't have to use brute force ;) It's much more fun.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Two-stepper

Postby Cenoman » Fri May 24, 2019 4:11 pm

SpAce wrote:Hi Cenoman! Does this network diagram depict your logic accurately?

Hidden Text: Show
Code: Select all
@(4)r3c1                            @(4)r8c3
 ||                                  ||
 ||              (6=34)r52c8 ------- (4)r2c3
 ||              /                   ||
 (4-8)r3c3 =*= (6)r5c4               ||
 ||              \                   ||
 ||              (6=3927)r5c8721 -*- (4)r3c3
 ||
 ||
 ||                           @(9)r9c1                                                @(4)r8c3
 ||                            ||                                                      ||
 ||  (4=87)r37c3 -*- (2)r2c2   ||               ------ (1)r9c2       (8=413)r138c7 -*- (4)r2c3
 ||  /               ||        ||             /        ||            /                 ||
 (4)r3c7             (9)r2c2 - (9)r9c2   (9=81)b8p68   (8)r9c2 =*= (8)r7c7             ||
     \               ||        ||       /     \        ||            \                 ||
     (4=3)r2c8 ----- (3)r2c2   (9)r9c6 -       \ --*-- (3)r9c2       (8)r89c8 ---*---- (4)r3c3
                                        \       \      ||
                                         \        -*-- (6)r9c2
                                          \            ||
                                            ---------- (9)r9c2

<=> (4r3c1 | 4r8c3 | 9r9c1) => -4 r9c1; stte

('*' implies an omitted single-threaded chain fragment)

Hi SpAce, first thank you for your deep reading of my cumbersome net !

I chose to use colors to display the links between the six krakens. But consequently, I could'nt use the html tags "code", "/code".
Here is another presentation with kraken indents, showing the hierarchy.
Hidden Text: Show
Code: Select all
   
   Kraken column (4)r238c3 =>!4r8c3-(6)r6c1   =>(4)r8c3=[4r2c3=4r3c3]-(6)r5c4
   (4)r2c3 - (4=3)r2c8 - (3=6)r5c8 - (6)r5c4
   (4-8)r3c3 = r13c1 - (86=7)r67c1 - (7=2396)r5c1278 - (6)r5c4
   (4)r8c3
   => (6)r5c4 => (4)r8c3

   Kraken cell (239)r2c2=>!9r2c2-(3)r2c8   =>(9)r2c2=[2r2c2=3r2c2] - (4)r3c7
   (2)r2c2-r5c2=(2-7)r5c1=r5c3-(7=8)r7c3-(8=4)r3c3 - (4)r3c7
   (3)r2c2-(3=4)r2c8 - (4)r3c7
   (9)r2c2
   => (4)r3c7 => (9)r2c2

      Kraken cell (13689)r9c2=>!8r9c2-(8)r8c6   =>(8)r9c2=[1r9c2=3r9c2=6r9c2=9r9c2] - (9)r9c6
      (1)r9c2 - (18=9)b8p68 - (9)r9c6
      (3)r9c2 - r9c4 = (3-7)r8c4 = r7c4 - (7=8)r7c3 - r3c3 = r13c1 - (8=6)r6c1 - r6c4 = (6-1)r5c4 = r5c5 - (18=9)b8p68 - (9)r9c6
      (6)r9c2 - (67=8)r7c13 - r789c2 = r4c2 - (8=6)r6c1 - r6c4 = (6-1)r5c4 = r5c5 - (18=9)b8p68 - (9)r9c6
      (9)r9c2 - (9)r9c6
      (8)r9c2
      => (9)r9c6 => (8)r9c2
 

      Kraken column (4)r238c3=>!4r8c3-(8)r7c7   =>(4)r8c3=[4r2c3=4r3c3] - (8)r7c7
      (4)r2c3 - (4=3)r2c8  - (314=8)r138c7 - (8)r7c7
      (4-8)r3c3 = r13c1 - r6c1 = r6c9 - r4c8 = (8)r89c8 - (8)r7c7
      (4)r8c3
      => (8)r7c7 => (4)r8c3

   Kraken row (9)r9c126=>!9r9c2-(4)r8c78   =>(9)r9c2=[9r9c1=9r9c6] - (4)r9c1
   (9)r9c1 - (4)r9c1
   (9)r9c6 => (8)r9c2 - r7c123 = r7c7 => (4)r8c3 - (4)r9c1
   (9)r9c2
   => - (9)r9c2 => - (4)r9c1

Kraken row (4)r3c137
(4)r3c1
(4-8)r3c3 = r13c1 - (8=6)r6c1  - r6c4 = r5c4 => (4)r8c3
(4)r3c7 => (9)r2c2 - r9c2 => - (4)r9c1

 => -4 r9c1; ste

And here is the net I had drawn on my paper.
Code: Select all
(8)r9c2 - (8)r7c123 = (8)r7c7 -*- (4)r2c3
 ||                     \          ||
 ||                       ---*--- (4)r3c3
 ||                                ||
(1)r9c2 -----                    @(4)r8c3
 ||           \
(3)r9c2 --*-- (18=9)b8p68
 ||           /    \
(6)r9c2 --*--       - (9)r9c6
 ||                /   ||
(9)r9c2-----------   @(9)r9c1   
                       ||       
                      (9)r9c2 - (9)r2c2      @(4)r3c1
                                 ||            ||
                                (2)r2c2 --*-- (4)r3c7          ---*--- (4)r3c3
                                 ||         /  ||            /          ||         
                                (3)r2c2 -*-   (4-8)r3c3 =*=(6)r5c4 -*- (4)r2c3
                                                                        ||
                                                                      @(4)r8c3

Very similar to yours ! I have adopted your conventions: '*' for omitted single threaded chain fragments, '@' for end-points
Only a slight difference. I find your node '(8)r9c2 =*= (8)r7c7' ambiguous. (8)r9c2 should be weakly linked on its right side and (8)r7c7 should be strongly linked on its left side. '=*=' suggests a derived strong link (the kind I usually write '==') Indeed, (8)r9c2 is strongly linked as an element of the r9c2-SIS and (8)r7c7 is weakly linked twice on its right side. In my own net, I have simply used the full chain (8)r9c2 - (8)r7c123 = (8)r7c7.
You could use the '=>' symbol, correct in this context, but I would not like (8)r9c2 -*= (8)r7c7 !

SpAce wrote:I haven't tried to write a matrix, but it's easy to see that it must be (at least) a BTM because there's no binary starting point (all end-points lie in 3-SISs). Perhaps this could be a good exercise for that?

I agree that it must be a BTM because all end-points lie in 3-SIS. I think it is a good exercise !
When posting my solution I had tried to write a matrix, but I missed time to check if it was actually a BTM. I failed to meet Steve K's last but one requirement:
If there are two top entries in a single row, then they each form a block. Each of these blocks must form triangular matrices.

I have tried again, and unless I made a mistake somewhere, I guess this matrix is a BTM:
Hidden Text: Show
Original matrix
Some lines encompass non native strong links, derived from single threaded chains. These strong links are tagged '=='
Should they be developed, they would add as many rows as columns, containing each two linked elements (strongly or weakly resp.) without changing the rationale below.
The matrix is thus reduced to size 18x18.
Code: Select all
4r8c3  4r3c3             4r2c3
       8r3c3 == 6r5c4
                6r5c8 == 4r2c8
               6r5c1278  ==    8r3c3
4r3c1                          4r3c3  4r3c7
                                      4r2c8  3r2c8
                                      4r3c3   ==   2r5c2
                                             3r2c2 2r2c2 9r2c2
9r9c1                                                    9r9c2  9r9c6
                                                                9b8p68 1b8p68
                                                                        1r5c5 == 8r6c1
                                                                                 8r13c1 == 3r9c4
                                                                                 8r4c2    ==     6r7c13
                                                                9r9c2   1r9c2              3r9c2 6r9c2   8r9c2
                                                                                                        8r7c123  8r7c7
                                                                                                                8r138c7 == 4r2c8
                                                                                                                 8r89c8    ==    8r3c3
4r8c3                                                                                                                      4r2c3 4r3c3

Note that matrix first row and last row are the same SIS (4)c3. Deleting last row and placing 4r2c8 and 8r3c3 weak links in columns 4 and 2 resp. would bring the matrix to size 17x16.

To check the BTM requirement If there are two top entries in a single row, then they each form a block. Each of these blocks must form triangular matrices.

let's assume 4r2c3 = True (in first row AND in last row)
The resulting matrix (TM a) is as follows (emptied rows and columns kept for a better comparison to the matrix above):
Code: Select all
4r8c3  4r3c3               
       8r3c3 == 6r5c4
                      ==
               6r5c1278  ==    8r3c3
4r3c1                          4r3c3  4r3c7
                                      4r2c8  3r2c8
                                      4r3c3   ==   2r5c2
                                             3r2c2 2r2c2 9r2c2
9r9c1                                                    9r9c2  9r9c6
                                                                9b8p68 1b8p68
                                                                        1r5c5 == 8r6c1
                                                                                 8r13c1 == 3r9c4
                                                                                 8r4c2    ==     6r7c13
                                                                9r9c2   1r9c2              3r9c2 6r9c2   8r9c2
                                                                                                        8r7c123  8r7c7
                                                                                                                        ==     
                                                                                                                 8r89c8    ==    8r3c3
4r8c3                                                                                                                            4r3c3

TM a is a valid triangular matrix 16x16, having 4r9c1 as an elimination.

Now, let's assume 4r3c3 = True (in first row AND in last row)
The resulting matrix (TM b) is as follows (emptied rows and columns kept for a better comparison to the matrix above):
Code: Select all
4r8c3                    4r2c3
             ==       
                      ==     
                         ==         
                                                     
                         4r2c8              3r2c8
                         4r2c8               ==   2r5c2
                                            3r2c2 2r2c2 9r2c2
9r9c1                                                   9r9c2  9r9c6
                                                               9b8p68 1b8p68
                                                                       1r5c5 == 8r6c1
                                                                                8r13c1 == 3r9c4
                                                                                8r4c2    ==     6r7c13
                                                               9r9c2   1r9c2              3r9c2 6r9c2   8r9c2
                                                                                                       8r7c123  8r7c7
                                                                                                               8r138c7 == 4r2c8
                                                                                                                          ==     
4r8c3                                                                                                                     4r2c3

TM b is a valid triangular matrix 13x13, having 4r9c1 as an elimination.

Overall conclusion: the matrix above is a valid BTM demonstrating the elimination of 4r9c1
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: Two-stepper

Postby SpAce » Fri May 24, 2019 5:47 pm

Cenoman wrote:Hi SpAce, first thank you for your deep reading of my cumbersome net !

It was fun! Thanks for providing the source material for it!

I chose to use colors to display the links between the six krakens. But consequently, I could'nt use the html tags "code", "/code".

Yeah, it's too bad that colors can't be used within code blocks. I guess it would require some escape mechanism which would complicate things.

Here is another presentation with kraken indents, showing the hierarchy.

Thanks!

And here is the net I had drawn on my paper.
Hidden Text: Show
Code: Select all
(8)r9c2 - (8)r7c123 = (8)r7c7 -*- (4)r2c3
 ||                     \          ||
 ||                       ---*--- (4)r3c3
 ||                                ||
(1)r9c2 -----                    @(4)r8c3
 ||           \
(3)r9c2 --*-- (18=9)b8p68
 ||           /    \
(6)r9c2 --*--       - (9)r9c6
 ||                /   ||
(9)r9c2-----------   @(9)r9c1   
                       ||       
                      (9)r9c2 - (9)r2c2      @(4)r3c1
                                 ||            ||
                                (2)r2c2 --*-- (4)r3c7          ---*--- (4)r3c3
                                 ||         /  ||            /          ||         
                                (3)r2c2 -*-   (4-8)r3c3 =*=(6)r5c4 -*- (4)r2c3
                                                                        ||
                                                                      @(4)r8c3

Very nice! I agree that the largest SIS is the better starting point. I thought about that afterwards but didn't want to start over.

Only a slight difference. I find your node '(8)r9c2 =*= (8)r7c7' ambiguous.

Yes, of course! Thanks for pointing out that newbie mistake (one way to see it is as a discontinuity in link alternation)! :) I don't know how it slipped through. There was a similar one with the double weak link around (8)r89c8. They both should now be corrected (one way -- yours would have been shorter, but I added the missing strongly-linked node because there was one on the other side already).

'=*=' suggests a derived strong link (the kind I usually write '==')

Exactly, and '-*-' is similarly a derived weak link (normally written as '--'). The normal marks would obviously be ambiguous in a net diagram, so I added the '*' for the derived links.

You could use the '=>' symbol, correct in this context, but I would not like (8)r9c2 -*= (8)r7c7 !

I agree on both accounts. However, using the '=>' within Eureka-like chains bothers my sense of aesthetics somehow, so I rather stick to the link markers (standard or derived). I agree that it's logically fully correct, of course.

I agree that it must be a BTM because all end-points lie in 3-SIS. I think it is a good exercise !

Great! I'll try my hand at that later. I don't know what will come of it, but many thanks for providing a reference if (and when) I get lost!
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017


Return to Puzzles