- Code: Select all
..697..2.....51..6.7.23..59...427.............41.9327.....4..935...6......2......
One of the hardest puzzles I've seen in a printed publication. Took me two moves but you're free to beat that. More is acceptable too.
..697..2.....51..6.7.23..59...427.............41.9327.....4..935...6......2......
+--------------------------+-------------------+-----------------------+
| a138 5 6 | 9 7 4 | A138 2 x18 |
| 2349 239 349 | 8 5 1 | 7 B34 6 |
| 148 7 48 | 2 3 6 | 148 5 9 |
+--------------------------+-------------------+-----------------------+
| 3689 3689 z3589 | 4 2 7 | 13689 1368 y158 |
| c23679 2369 d379-5 | C156 C18 C58 | 369 C36 4 |
| b68 4 1 | 56 9 3 | 2 7 58 |
+--------------------------+-------------------+-----------------------+
| b678 168 78 | 157 4 2 | 1568 9 3 |
| 5 1389 34789 | 137 6 89 | 148 148 2 |
| 34689 13689 2 | 135 18 589 | 14568 1468 7 |
+--------------------------+-------------------+-----------------------+
+--------------------+------------------+----------------------+
| C13 5 6 | 9 7 4 | 138 2 18 |
| 2 B39 349 | 8 5 1 | 7 34 6 |
| 14 7 8 | 2 3 6 | 14 5 9 |
+--------------------+------------------+----------------------+
| D3-9 6 5 | 4 2 7 | 1389 138 18 |
| 7 2 z39 | 15 18 58 | y369 36 4 |
| 8 4 1 | 6 9 3 | 2 7 5 |
+--------------------+------------------+----------------------+
| 6 18 7 | 15 4 2 | 158 9 3 |
| 5 1389 349 | 7 6 89 | 148 148 2 |
| a49 A189 2 | 3 18 x589 | y14568 1468 7 |
+--------------------+------------------+----------------------+
+--------------------------+-------------------+-----------------------+
| 138 5 6 | 9 7 4 | 138 2 18 |
| 2349 239 349 | 8 5 1 | 7 34 6 |
| 148 7 48 | 2 3 6 | 148 5 9 |
+--------------------------+-------------------+-----------------------+
| 3689 3689 3589 | 4 2 7 | 13689 1368 158 |
| 23679 2369 3579 | 156 18 58 | 369 36 4 |
| 68 4 1 | 56 9 3 | 2 7 58 |
+--------------------------+-------------------+-----------------------+
| 678 168 78 | 157 4 2 | 1568 9 3 |
| 5 1389 34789 | 137 6 89 | 148 148 2 |
| 34689 13689 2 | 135 18 589 | 14568 1468 7 |
+--------------------------+-------------------+-----------------------+
Cenoman wrote:Two steps
1. Kraken row (8)r1c179 =>-5r5c3; 13 placements & basics
.-------------------------.----------------.------------------.
| 13-8 5 6 | 9 7 4 | 138 2 18 |
| 2349 239 349 | 8 5 1 | 7 34 6 |
| 14-8 7 48 | 2 3 6 | 148 5 9 |
:-------------------------+----------------+------------------:
| 369-8 3689 3589 | 4 2 7 | 13689 1368 158 |
| c23679 2369 c3579 | b156 18 b58 | 369 36 4 |
| ad(6[8]) 4 1 | a56 9 3 | 2 7 58 |
:-------------------------+----------------+------------------:
| d(68)7 168 78 | 157 4 2 | 1568 9 3 |
| 5 1389 34789 | 137 6 89 | 148 148 2 |
| 3469-8 13689 2 | 135 18 589 | 14568 1468 7 |
'-------------------------'----------------'------------------'
.------------------.---------------.---------------------.
| 13 5 6 | 9 7 4 | 138 2 e1(8) |
| 2 39 349 | 8 5 1 | 7 e34 6 |
| 14 7 8 | 2 3 6 | e14 5 9 |
:------------------+---------------+---------------------:
| 39 68 359 | 4 2 7 | 13689 1368 158 |
| 7 2 359 | c156 18 58 | 369 d36 4 |
| a6[8] 4 1 | b56 9 3 | 2 7 5-8 |
:------------------+---------------+---------------------:
| 68 168 7 | 15 4 2 | 1568 9 3 |
| 5 1389 349 | 7 6 89 | 148 148 2 |
| 49 1689 2 | 3 18 589 | 14568 1468 7 |
'------------------'---------------'---------------------'
2. Kraken row (9)r9c126 =>-9r4c1; ste
.--------------------.---------------.-------------------.
| 13 5 6 | 9 7 4 | 138 2 18 |
| 2 39 349 | 8 5 1 | 7 34 6 |
| 14 7 8 | 2 3 6 | 14 5 9 |
:--------------------+---------------+-------------------:
| b39 6 5 | 4 2 7 | c1389 138 18 |
| 7 2 ef(3)9 | 15 18 58 | d369 36 4 |
| 8 4 1 | 6 9 3 | 2 7 5 |
:--------------------+---------------+-------------------:
| 6 18 7 | 15 4 2 | 158 9 3 |
| 5 1389 a[4]-39 | 7 6 f8(9) | 148 148 2 |
| b49 189 2 | 3 18 f589 | de14568 1468 7 |
'--------------------'---------------'-------------------'
.----------------------.----------------.-------------------.
| 1-3 5 6 | 9 7 4 | 138 2 18 |
| 2 k(3)9 k349 | 8 5 1 | 7 34 6 |
| 14 7 8 | 2 3 6 | 14 5 9 |
:----------------------+----------------+-------------------:
| al(3)9 d68 l359 | 4 2 7 | c13689 1368 158 |
| 7 2 al359 | 156 18 f58 | b369 36 4 |
| e68 4 1 | e56 9 3 | 2 7 58 |
:----------------------+----------------+-------------------:
| d68 168 7 | 15 4 2 | c568 9 3 |
| 5 1389 j349 | 7 6 fI89 | 148 148 2 |
| 49 1689 2 | 3 18 H589 | G14568 1468 7 |
'----------------------'----------------'-------------------'
(6)r47c7 - r4c2&r7c1 = (65)r6c14 - (5=89)r58c6 - (93)r2c32
|| \ ||
(3,9)b4p16 = (9-6)r5c7 - (9)r8c3
|| / ||
(6-5)r9c7 = (59)r98c6 -------------------------- (9,3)b4p361
=> -3 r1c1; stte
.-----------------------.-----------------.---------------------.
| f138 5 6 | 9 7 4 | 138 2 h1(8) |
| 2349 239 349 | 8 5 1 | 7 fg34 6 |
| f148 7 g48 | 2 3 6 | g148 5 9 |
:-----------------------+-----------------+---------------------:
| 3689 3689 3589 | 4 2 7 | 13689 1368 158 |
| c23679 2369 c3579 | c156 c18 c58 | 369 de36 4 |
| ae6[8] 4 1 | b56 9 3 | 2 7 5-8 |
:-----------------------+-----------------+---------------------:
| de678 168 78 | 157 4 2 | 1568 9 3 |
| 5 1389 34789 | 137 6 89 | 148 148 2 |
| 34689 13689 2 | 135 18 589 | 14568 1468 7 |
'-----------------------'-----------------'---------------------'
... but the true challenge is one step
*------------------------------------------------------*
|b138 5 6 | 9 7 4 | 138 2 18 |
|b2349 b239 b349 | 8 5 1 | 7 34 6 |
|b148 7 c48 | 2 3 6 | 148 5 9 |
|-----------------------+-------------+----------------|
| 39-68 3689 359-8 | 4 2 7 | 13689 1368 158 |
| 2379-6 2369 3579 | 156 18 58 | 369 36 4 |
|a68 4 1 | 56 9 3 | 2 7 58 |
|-----------------------+-------------+----------------|
|a678 168 c78 | 15-7 4 2 | 1568 9 3 |
| 5 1389 349-78 | 137 6 89 | 148 148 2 |
| 349-68 13689 2 | 135 18 589 | 14568 1468 7 |
*------------------------------------------------------*
Leren wrote:2. There is a relatively straightforward move that clears the decks quit a bit.
ALS XY Wing Loop: (7=8) r67c1 - (8=4) r1c1, r2c123, r3c1 - (4=7) r37c3 => - 68 r4c1, - 8 r4c3, - 6 r5c1, - 7 r7c4, - 78 r8c3, - 68 r9c1
(8=4) r1c1, r2c123, r3c1
And the second step is : haven't found it yet.
+-------------------------------------------------+
| 138 5 6 | 9 7 4 | 138 2 18 |
| 2349 239 349 | 8 5 1 | 7 34 6 |
| 148 7 48 | 2 3 6 | 148 5 9 |
+-------------------------------------------------+
| 3689 3689 3589 | 4 2 7 | 13689 1368 158 |
| 23679 2369 3579 | 156 18 58 | 369 36 4 |
| 68 4 1 | 56 9 3 | 2 7 58 |
+-------------------------------------------------+
| 678 168 78 | 157 4 2 | 1568 9 3 |
| 5 1389 34789 | 137 6 89 | 148 148 2 |
| 34689 13689 2 | 135 18 589 | 14568 1468 7 |
+-------------------------------------------------+
Cenoman wrote:... but the true challenge is one step
Multi-kraken... No tags. Inferences from each kraken is colored the same, at the last line of the kraken, and at the place where it is chained.
@(4)r3c1 @(4)r8c3
|| ||
|| (6=34)r52c8 ------- (4)r2c3
|| / ||
(4-8)r3c3 =*= (6)r5c4 ||
|| \ ||
|| (6=3927)r5c8721 -*- (4)r3c3
||
||
|| @(9)r9c1 @(4)r8c3
|| || ||
|| (4=87)r37c3 -*- (2)r2c2 || ------ (1)r9c2 (8=413)r138c7 --*-- (4)r2c3
|| / || || / || / ||
(4)r3c7 (9)r2c2 - (9)r9c2 (9=81)b8p68 (8)r9c2 - r7c123 = (8)r7c7 ||
\ || || / \ || \ ||
(4=3)r2c8 ----- (3)r2c2 (9)r9c6 - \ --*-- (3)r9c2 (8)r89c8 = r4c8 -*- (4)r3c3
\ \ ||
\ -*-- (6)r9c2
\ ||
---------- (9)r9c2
<=> (4r3c1 | 4r8c3 | 9r9c1) => -4 r9c1; stte
('*' implies an omitted single-threaded chain fragment)
This could be represented in a BTM (Block Triangular Matrix) 35x35 (count no guaranteed !)
Wecoc wrote:r8c6 (89) can't be 8 because it forces a 3 in r2c8 and a 6 in r9c8, therefore r5c8 would be empty
r1c9 (18) eliminates candidate 8 both in r3c1 and r8c3
r9c6 (58) can only be 5, otherwise results in a 4 both in r3c7 and r8c7
r5c4 (56) can't be 6 because it forces a 1 in r3c7 and an 8 in r6c9, therefore r1c9 would be empty
r1c1 (13) can't be 3 because it forces a 3 in r8c2 and a 4 in r9c1, therefore r8c3 would be empty
From there only singles till the end
SpAce wrote:Hi Cenoman! Does this network diagram depict your logic accurately?
(8)r9c2 - (8)r7c123 = (8)r7c7 -*- (4)r2c3
|| \ ||
|| ---*--- (4)r3c3
|| ||
(1)r9c2 ----- @(4)r8c3
|| \
(3)r9c2 --*-- (18=9)b8p68
|| / \
(6)r9c2 --*-- - (9)r9c6
|| / ||
(9)r9c2----------- @(9)r9c1
||
(9)r9c2 - (9)r2c2 @(4)r3c1
|| ||
(2)r2c2 --*-- (4)r3c7 ---*--- (4)r3c3
|| / || / ||
(3)r2c2 -*- (4-8)r3c3 =*=(6)r5c4 -*- (4)r2c3
||
@(4)r8c3
SpAce wrote:I haven't tried to write a matrix, but it's easy to see that it must be (at least) a BTM because there's no binary starting point (all end-points lie in 3-SISs). Perhaps this could be a good exercise for that?
If there are two top entries in a single row, then they each form a block. Each of these blocks must form triangular matrices.
Cenoman wrote:Hi SpAce, first thank you for your deep reading of my cumbersome net !
I chose to use colors to display the links between the six krakens. But consequently, I could'nt use the html tags "code", "/code".
Here is another presentation with kraken indents, showing the hierarchy.
And here is the net I had drawn on my paper.Hidden Text: Show
Only a slight difference. I find your node '(8)r9c2 =*= (8)r7c7' ambiguous.
'=*=' suggests a derived strong link (the kind I usually write '==')
You could use the '=>' symbol, correct in this context, but I would not like (8)r9c2 -*= (8)r7c7 !
I agree that it must be a BTM because all end-points lie in 3-SIS. I think it is a good exercise !