David P Bird wrote:The possible alternative (ab/cd) notation for SK Loops is because they are NOT AICs and the logic covers three divisions of the truths not two.
Strange ... and yet ronk presented it like an AIC with the OR(X,Y):(3) logic.
- Code: Select all
Steve Kurzhal's original presentation w/ RonK's labels:
1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1
1 A478 34578 | 3567 3689 5678 | 3489 I369 2
L238 9 L378 | 4 K12368 K12678 |J138 5 J368
23458 A248 6 | 1235 12389 1258 | 7 I139 3489
-------------------------+-------------------------+-----------------------
2468 5 1478 | 9 1246 3 | 128 H1267 678
234689 B12468 13489 | 126 7 1246 | 123589 H12369 35689
2369 B1267 1379 | 8 5 126 | 1239 4 3679
-------------------------+-------------------------+-----------------------
7 C148 14589 | 1235 12348 12458 | 6 G239 3459
D456 3 D145 |E12567 E1246 9 |F245 8 F457
45689 C468 2 | 3567 3468 45678 | 3459 G379 1
(27)r13c2=(27-16)r56c2=(16)r79c2-(16)r8c13=(16-27)r8c45=(27)r8c79-
(27)r79c8=(27-16)r45c8=(16)r13c8-(16)r2c79=(16-27)r2c56=(27)r2c13-loop
The SK-Loop doesn't work unless the first SL forces both of (27) false in r13c2 and both of (27) true in r56c2. We may not have a consensus on how to notate these terms, but it sure looks like an AIC loop in all other respects!
This is even more apparent in the V-Loop version:
- Code: Select all
(48=27)r13c2 - (27=38)r2c13 - (38=16)r2c79 - (16=39)r13c8 -
(39=27)r79c8 - (27=45)r8c79 - (45=16)r8c13 - (16=48)r79c2 - loop
_