## Trying to get better, could use some help

Post the puzzle or solving technique that's causing you trouble and someone will help

### Trying to get better, could use some help

I would greatly appreciate some pointers
NOSfan1019

Posts: 1
Joined: 29 May 2014

### Re: Trying to get better, could use some help

There is an almost locked set in block 7 on 15, that combines with the 15 in R7C8 for a couple of eliminations. After that it looks like either a WXYZ Wing or a fairly long chain.

Posts: 80
Joined: 17 April 2010
Location: Silver Spring, MD, USA

### Re: Trying to get better, could use some help

UR r1c56 r8c56 is a good start
and eliminations within the "3"

but there will still be some work to go to the end
champagne
2017 Supporter

Posts: 6714
Joined: 02 August 2007
Location: France Brittany

### Re: Trying to get better, could use some help

There are only 2 solutions for the digit 3.
They are a very good, if not the best, starting point to analyse the puzzle.

Here, one of them leads to the solution while the other quickly gives a contradiction!

An interpretation :
Code: Select all
`+----------------+-------------------------+--------------+| 3    7     1   | 4        59     59      | 8   2   6    || 9    4     6   | (27)     8      27      | 15  3   15   || 8    2     5   | 3        1      6       | 7   4   9    |+----------------+-------------------------+--------------+| 6    135   7   | 5(2)     5(23)  8       | 9   15  4    || 125  1359  239 | 6        4      59(3)   | 15  8   7    || 4    59    8   | 59       7      1       | 2   6   3    |+----------------+-------------------------+--------------+| 125  1359  239 | 1258(7)  6      25-3(7) | 4   15  1258 || 125  6     4   | 12589    259    259     | 3   7   1258 || 7    8     23  | 125      235    4       | 6   9   125  |+----------------+-------------------------+--------------+`
Either r5c6=3, or r4c5=3->r4c4=2,r2c4=7=r7c6; no 3 in box 8 :=> r5c6=3; singles to end.
or in Eureka notation
[3r5c6=(3-2)r4c5=2r4c4-(2=7)r2c4-7r7c4=7r7c6]-3r7c6=3r5c6; ste.
JC Van Hay

Posts: 719
Joined: 22 May 2010

### Re: Trying to get better, could use some help

Code: Select all
`*--------------------------------------------------------------*| 3     7     1      | 4     59    59     | 8     2     6      || 9     4     6      |d27    8    e27     | 15    3     15     || 8     2     5      | 3     1     6      | 7     4     9      ||--------------------+--------------------+--------------------|| 6     135   7      |c25   b235   8      | 9     15    4      || 125   1359  239    | 6     4    a359    | 15    8     7      || 4     59    8      | 59    7     1      | 2     6     3      ||--------------------+--------------------+--------------------|| 125   1359  239    | 12578 6    f257-3  | 4     15    1258   || 125   6     4      | 12589 259   259    | 3     7     1258   || 7     8     23     | 125   235   4      | 6     9     125    |*--------------------------------------------------------------*`

Similar to JC's solution:

(3) r5c6 = (3-2) r4c5 = r4c4 - r2c4 = (2-7) r2c6 = (7) r7c6 => - 3 r7c6; stte

Leren
Leren

Posts: 3319
Joined: 03 June 2012

### Re: Trying to get better, could use some help

_

I used my solver to try and find moderate steps to solve this puzzle. No luck.

Since I'll need to resort to a chain at some point, I might as well use one from the beginning.

A "discontinuous loop" is a chain where you assert something is true/false, and then show that it's false/true.

Here's a discontinuous loop that leaves Singles as the only following steps needed.

Code: Select all
` *--------------------------------------------------------------------* | 3      7      1      | 4      59    d59     | 8      2      6      | | 9      4      6      | 27     8      27     | 15     3      15     | | 8      2      5      | 3      1      6      | 7      4      9      | |----------------------+----------------------+----------------------| | 6      135    7      | 25    b235    8      | 9      15     4      | | 125    1359   239    | 6      4    ae3-59   | 15     8      7      | | 4      59     8      | 59     7      1      | 2      6      3      | |----------------------+----------------------+----------------------| | 125    1359   239    | 12578  6      2357   | 4      15     1258   | | 125    6      4      | 12589 c259   d259    | 3      7      1258   | | 7      8      23     | 125   c235    4      | 6      9      125    | *--------------------------------------------------------------------* (3)r5c6 = (3-2)r4c5 = (2)r89c5 - (2=59)r18c6 - (59=3)r5c6`

_
daj95376
2014 Supporter

Posts: 2624
Joined: 15 May 2006

### Re: Trying to get better, could use some help

Code: Select all
`3      7      1      | 4      59     59     | 8      2      6      9      4      6      |d27     8     e27     | 15     3      15     8      2      5      | 3      1      6      | 7      4      9      ---------------------+----------------------+---------------------6     a135    7      |c25    b25-3   8      | 9      15     4      125    159-3  29-3   | 6      4     g359    | 15     8      7      4      59     8      | 59     7      1      | 2      6      3      ---------------------+----------------------+---------------------125    1359   239    | 12578  6     f2357   | 4      15     1258   125    6      4      | 12589  259    259    | 3      7      1258   7      8      23     | 125    235    4      | 6      9      125    `

A simple but longish AIC:
(3)r4c2 = (3-2)r4c5 = r4c4 - (2=7)r2c4 - r2c6 = (7-3)r7c6 = r5c6 => -3 r4c5, r5c23; then singles.

Phil
pjb
2014 Supporter

Posts: 2025
Joined: 11 September 2011
Location: Sydney, Australia

### Re: Trying to get better, could use some help

NOSfan1019,

first of all i would make the easy eliminations, as long as you don't want to look for one-steppers, as they do in the Puzzles thread.
Here you have the UR, champagne mentioned and a skyscraper for 3 in rows 49 (r5c3,r7c2<>3).

If you are still stuck, it's often useful to look at the almost pairs in such puzzles.

A good one is in column 4: Either r5c6=3 or you have a pair 59 in r15c6. This implies r8c6=2, r2c4=2, r4c5=2 and r5c6=3 too.
(You could do the same with the almost pair 59(2) in r18c6)

Another one is in row 4: Either r4c45=25 or r4c5=3, r7c6=3, r7c4=7, r2c4=2, r4c4=5.
In both cases r4c8=1.

With some practise you will quickly find out, which almost pairs (or triples) could be useful.
eleven

Posts: 1917
Joined: 10 February 2008

### Re: Trying to get better, could use some help

Nice puzzle

Code: Select all
` *--------------------------------------------------------------------* | 3      7      1      | 4      59    b59     | 8      2      6      | | 9      4      6      |a27     8     b27     | 15     3      15     | | 8      2      5      | 3      1      6      | 7      4      9      | |----------------------+----------------------+----------------------| | 6      135    7      |a25     235    8      | 9      15     4      | | 125    1359   239    | 6      4      3-59   | 15     8      7      | | 4      59     8      |a59     7      1      | 2      6      3      | |----------------------+----------------------+----------------------| | 125    1359   239    | 12578  6      2357   | 4      15     1258   | | 125    6      4      | 12589  259   b259    | 3      7      1258   | | 7      8      23     | 125    235    4      | 6      9      125    | *--------------------------------------------------------------------*(59=7)r246c4-(7=59)r128c6 => -59r5c6; ste`
dan

ArkieTech

Posts: 3008
Joined: 29 May 2006
Location: NW Arkansas USA