trying to find a logic to solve this puzzle

Advanced methods and approaches for solving Sudoku puzzles

trying to find a logic to solve this puzzle

Postby ronin2307 » Tue Dec 27, 2005 10:24 pm

this is one of those "diabolically hard mini" puzzles and I am stuck to the point where it seems like no logic applies. I have solved the puzzle by guessing but I woul like to know if there is any logic that I can apply at the point (shown below) to advance without trial and error approach.

6 _ _ 4 3 _
_ _ _ 6 5 _
_ _ 2 5 1 _
_ 1 _ 2 _ 3
_ _ _ 3 _ _
_ 4 _ 1 2 _

the grid is 6x6 with 3c x 2r

thanx
ronin2307
 
Posts: 2
Joined: 27 December 2005

Postby rubylips » Tue Dec 27, 2005 10:38 pm

You ought to search for information on 'naked pairs' and 'hidden pairs' on this forum.

Code: Select all
     6   25   15 |  4   3   12
  1234   23  134 |  6   5   12
-----------------+------------
    34   36    2 |  5   1   46
    45    1  456 |  2  46    3
-----------------+------------
   125  256  156 |  3  46  456
    35    4  356 |  1   2   56

The values 1 and 2 occupy the cells r2c1 and r5c1 in some order.
- The moves r2c1:=3, r2c1:=4 and r5c1:=5 have been eliminated.
The cell r2c3 is the only candidate for the value 4 in Row 2.
rubylips
 
Posts: 149
Joined: 01 November 2005

Postby ronin2307 » Tue Dec 27, 2005 10:46 pm

sadly I have tried to educate myself about hidden and naked pairs but this one slipped thru my fingers. appreciate the help

rubylips wrote:You ought to search for information on 'naked pairs' and 'hidden pairs' on this forum.

Code: Select all
     6   25   15 |  4   3   12
  1234   23  134 |  6   5   12
-----------------+------------
    34   36    2 |  5   1   46
    45    1  456 |  2  46    3
-----------------+------------
   125  256  156 |  3  46  456
    35    4  356 |  1   2   56

The values 1 and 2 occupy the cells r2c1 and r5c1 in some order.
- The moves r2c1:=3, r2c1:=4 and r5c1:=5 have been eliminated.
The cell r2c3 is the only candidate for the value 4 in Row 2.
ronin2307
 
Posts: 2
Joined: 27 December 2005


Return to Advanced solving techniques