Triple Distilled

Post puzzles for others to solve here.

Triple Distilled

Postby coloin » Wed Apr 02, 2025 5:43 pm

Code: Select all
+---+---+---+
|...|...|...|
|..5|9.8|...|
|..6|74.|.5.|
+---+---+---+
|.54|...|6..|
|8.9|6.4|...|
|.7.|5..|8..|
+---+---+---+
|...|..9|46.|
|9.8|...|7.1|
|..7|...|..3|
+---+---+---+  Triple Distilled
coloin
 
Posts: 2555
Joined: 05 May 2005
Location: Devon

Re: Triple Distilled

Postby Leren » Wed Apr 02, 2025 7:30 pm

The short answer is that after a number of moves I eventually unearthed the following.

Code: Select all
*--------------------------------------------------*
| 47    89  *123 |*123    56    56  | 123  489 478 |
| 47   *123  5   | 9     *123   8   | 123  47  6   |
|*123   89   6   | 7      4    *123 | 1239 5   289 |
|----------------+------------------+--------------|
|*123   5    4   |*8-123  1238  7   | 6    139 29  |
| 8    *123  9   | 6     *123   4   | 25   137 257 |
| 6     7   *123 | 5      9    *123 | 8    134 24  |
|----------------+------------------+--------------|
| 1235  123  123 | 128    7     9   | 4    6   58  |
| 9     6    8   | 4      35    35  | 7    2   1   |
| 125   4    7   | 128    1268  126 | 59   89  3   |
*--------------------------------------------------*

Type 1 Trigadon - Digits 123 in Boxes 1245 => 123 r4c4; stte

Leren
Leren
 
Posts: 5151
Joined: 03 June 2012

Re: Triple Distilled

Postby coloin » Wed Apr 02, 2025 8:04 pm

Code: Select all
+----------------------+----------------------+----------------------+
| 12347  89     123    | 123    12356  12356  | 1239   134789 246789 |
| 12347  1234   5      | 9      1236   8      | 123    1347   2467   |
| 123    89     6      | 7      4      123    | 1239   5      289    |
+----------------------+----------------------+----------------------+
| 123    5      4      | 1238   12389  7      | 6      139    29     |
| 8      123    9      | 6      123    4      | 1235   137    257    |
| 6      7      123    | 5      1239   123    | 8      1349   249    |
+----------------------+----------------------+----------------------+
| 1235   123    123    | 1238   7      9      | 4      6      58     |
| 9      346    8      | 34     356    356    | 7      2      1      |
| 1245   1246   7      | 1248   1268   126    | 59     89     3      |
+----------------------+----------------------+----------------------+

Yes it is one of the three...
Edit ..... The tridagon used is one of three ...... { from below "with 3 guardians (in cells marked @): n4r2c2 n6r2c5 n8r4c4"] :oops:
Last edited by coloin on Thu Apr 03, 2025 11:04 am, edited 1 time in total.
coloin
 
Posts: 2555
Joined: 05 May 2005
Location: Devon

Re: Triple Distilled

Postby denis_berthier » Thu Apr 03, 2025 3:53 am

.
I don't know what the other two are, but there are lots of (useless) impossible patterns.
The tridagon alone is enough to solve the puzzle in easy steps:
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 12347  123489 123    ! 123    12356  12356  ! 1239   134789 246789 !
   ! 12347  1234   5      ! 9      1236   8      ! 123    1347   2467   !
   ! 123    12389  6      ! 7      4      123    ! 1239   5      289    !
   +----------------------+----------------------+----------------------+
   ! 123    5      4      ! 1238   12389  7      ! 6      139    29     !
   ! 8      123    9      ! 6      123    4      ! 1235   137    257    !
   ! 6      7      123    ! 5      1239   123    ! 8      1349   249    !
   +----------------------+----------------------+----------------------+
   ! 1235   123    123    ! 1238   7      9      ! 4      6      58     !
   ! 9      346    8      ! 34     356    356    ! 7      2      1      !
   ! 1245   1246   7      ! 1248   1268   126    ! 59     89     3      !
   +----------------------+----------------------+----------------------+
185 candidates.


hidden-pairs-in-a-column: c2{n8 n9}{r1 r3} ==> r3c2≠3, r3c2≠2, r3c2≠1, r1c2≠4, r1c2≠3, r1c2≠2, r1c2≠1

Code: Select all
Trid-OR3-relation for digits 1, 2 and 3 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c4, r2c5, r3c6
        b4, with cells (marked #): r6c3, r5c2, r4c1
        b5, with cells (marked #): r6c6, r5c5, r4c4
with 3 guardians (in cells marked @): n4r2c2 n6r2c5 n8r4c4
   +----------------------+----------------------+----------------------+
   ! 12347  89     123#   ! 123#   12356  12356  ! 1239   134789 246789 !
   ! 12347  1234#@ 5      ! 9      1236#@ 8      ! 123    1347   2467   !
   ! 123#   89     6      ! 7      4      123#   ! 1239   5      289    !
   +----------------------+----------------------+----------------------+
   ! 123#   5      4      ! 1238#@ 12389  7      ! 6      139    29     !
   ! 8      123#   9      ! 6      123#   4      ! 1235   137    257    !
   ! 6      7      123#   ! 5      1239   123#   ! 8      1349   249    !
   +----------------------+----------------------+----------------------+
   ! 1235   123    123    ! 1238   7      9      ! 4      6      58     !
   ! 9      346    8      ! 34     356    356    ! 7      2      1      !
   ! 1245   1246   7      ! 1248   1268   126    ! 59     89     3      !
   +----------------------+----------------------+----------------------+


biv-chain[3]: r9c8{n9 n8} - c5n8{r9 r4} - b5n9{r4c5 r6c5} ==> r6c8≠9
biv-chain[3]: r9n9{c7 c8} - c8n8{r9 r1} - r1c2{n8 n9} ==> r1c7≠9
naked-triplets-in-a-row: r1{c3 c4 c7}{n1 n2 n3} ==> r1c9≠2, r1c8≠3, r1c8≠1, r1c6≠3, r1c6≠2, r1c6≠1, r1c5≠3, r1c5≠2, r1c5≠1, r1c1≠3, r1c1≠2, r1c1≠1
naked-pairs-in-a-block: b2{r1c5 r1c6}{n5 n6} ==> r2c5≠6
hidden-single-in-a-row ==> r2c9=6

At least one candidate of a previous Trid-OR3-relation between candidates n4r2c2 n6r2c5 n8r4c4 has just been eliminated.
There remains a Trid-OR2-relation between candidates: n4r2c2 n8r4c4

t-whip[3]: r2n7{c8 c1} - r1c1{n7 n4} - r2n4{c2 .} ==> r2c8≠3, r2c8≠1
whip[1]: c8n1{r6 .} ==> r5c7≠1
whip[1]: c8n3{r6 .} ==> r5c7≠3
biv-chain[4]: r1c1{n4 n7} - c9n7{r1 r5} - b6n5{r5c9 r5c7} - r9n5{c7 c1} ==> r9c1≠4
whip[1]: b7n4{r9c2 .} ==> r2c2≠4

At least one candidate of a previous Trid-OR2-relation between candidates n4r2c2 n8r4c4 has just been eliminated.
There remains a Trid-OR1-relation between candidates: n8r4c4

Trid-ORk-relation with only one candidate => r4c4=8
easy end in S2
.
denis_berthier
2010 Supporter
 
Posts: 4416
Joined: 19 June 2007
Location: Paris

Re: Triple Distilled

Postby pjb » Thu Apr 03, 2025 5:14 am

Similar to Leren - change difficult type 3 TH to a type 1 first:
1. (9=8)r1c2 - (8)r1c8 = (8-9)r9c8 = (9)r9c7 => -9 r1c7
basics
2. (4=7)r1c1 - (7)r1c9 = (7)r5c9 - (7=5)r5c2578 - (5)r9c7 = (5-4)r9c1 => -4 r9c1
more basics, then

Code: Select all
 47      89      123*   | 123*   56     56     | 123    4789   4789   
 47      123*    5      | 9      123*   8      | 123    47     6     
 123*    89      6      | 7      4      123*   | 1239   5      289   
------------------------+----------------------+---------------------
 123*    5       4      | 8-123* 12389  7      | 6      139    29     
 8       123*    9      | 6      123*   4      | 25     137    257   
 6       7       123*   | 5      1239   123*   | 8      1349   249   
------------------------+----------------------+---------------------
 1235    123     123    | 128    7      9      | 4      6      58     
 9       46      8      | 34     356    356    | 7      2      1     
 125     46      7      | 1248   1268   126    | 59     89     3     


type 1 TH => -123 r4c4
more basics, then
(2)r1c4 = (2)r1c3 - (2)r2c2 = (2)r7c2 => -2 r7c4; stte

Phil
pjb
2014 Supporter
 
Posts: 2693
Joined: 11 September 2011
Location: Sydney, Australia

Re: Triple Distilled

Postby coloin » Thu Apr 03, 2025 11:07 am

Well solved folks...
Pity I couldnt have had a more challenging puzzle to live up to the name..! :roll:
coloin
 
Posts: 2555
Joined: 05 May 2005
Location: Devon


Return to Puzzles