.
I don't know what the other two are, but there are lots of (useless) impossible patterns.
The tridagon alone is enough to solve the puzzle in easy steps:
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 12347 123489 123 ! 123 12356 12356 ! 1239 134789 246789 !
! 12347 1234 5 ! 9 1236 8 ! 123 1347 2467 !
! 123 12389 6 ! 7 4 123 ! 1239 5 289 !
+----------------------+----------------------+----------------------+
! 123 5 4 ! 1238 12389 7 ! 6 139 29 !
! 8 123 9 ! 6 123 4 ! 1235 137 257 !
! 6 7 123 ! 5 1239 123 ! 8 1349 249 !
+----------------------+----------------------+----------------------+
! 1235 123 123 ! 1238 7 9 ! 4 6 58 !
! 9 346 8 ! 34 356 356 ! 7 2 1 !
! 1245 1246 7 ! 1248 1268 126 ! 59 89 3 !
+----------------------+----------------------+----------------------+
185 candidates.
hidden-pairs-in-a-column: c2{n8 n9}{r1 r3} ==> r3c2≠3, r3c2≠2, r3c2≠1, r1c2≠4, r1c2≠3, r1c2≠2, r1c2≠1
- Code: Select all
Trid-OR3-relation for digits 1, 2 and 3 in blocks:
b1, with cells (marked #): r1c3, r2c2, r3c1
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r6c3, r5c2, r4c1
b5, with cells (marked #): r6c6, r5c5, r4c4
with 3 guardians (in cells marked @): n4r2c2 n6r2c5 n8r4c4
+----------------------+----------------------+----------------------+
! 12347 89 123# ! 123# 12356 12356 ! 1239 134789 246789 !
! 12347 1234#@ 5 ! 9 1236#@ 8 ! 123 1347 2467 !
! 123# 89 6 ! 7 4 123# ! 1239 5 289 !
+----------------------+----------------------+----------------------+
! 123# 5 4 ! 1238#@ 12389 7 ! 6 139 29 !
! 8 123# 9 ! 6 123# 4 ! 1235 137 257 !
! 6 7 123# ! 5 1239 123# ! 8 1349 249 !
+----------------------+----------------------+----------------------+
! 1235 123 123 ! 1238 7 9 ! 4 6 58 !
! 9 346 8 ! 34 356 356 ! 7 2 1 !
! 1245 1246 7 ! 1248 1268 126 ! 59 89 3 !
+----------------------+----------------------+----------------------+
biv-chain[3]: r9c8{n9 n8} - c5n8{r9 r4} - b5n9{r4c5 r6c5} ==> r6c8≠9
biv-chain[3]: r9n9{c7 c8} - c8n8{r9 r1} - r1c2{n8 n9} ==> r1c7≠9
naked-triplets-in-a-row: r1{c3 c4 c7}{n1 n2 n3} ==> r1c9≠2, r1c8≠3, r1c8≠1, r1c6≠3, r1c6≠2, r1c6≠1, r1c5≠3, r1c5≠2, r1c5≠1, r1c1≠3, r1c1≠2, r1c1≠1
naked-pairs-in-a-block: b2{r1c5 r1c6}{n5 n6} ==> r2c5≠6
hidden-single-in-a-row ==> r2c9=6
At least one candidate of a previous Trid-OR3-relation between candidates n4r2c2 n6r2c5 n8r4c4 has just been eliminated.
There remains a Trid-OR2-relation between candidates: n4r2c2 n8r4c4
t-whip[3]: r2n7{c8 c1} - r1c1{n7 n4} - r2n4{c2 .} ==> r2c8≠3, r2c8≠1
whip[1]: c8n1{r6 .} ==> r5c7≠1
whip[1]: c8n3{r6 .} ==> r5c7≠3
biv-chain[4]: r1c1{n4 n7} - c9n7{r1 r5} - b6n5{r5c9 r5c7} - r9n5{c7 c1} ==> r9c1≠4
whip[1]: b7n4{r9c2 .} ==> r2c2≠4
At least one candidate of a previous Trid-OR2-relation between candidates n4r2c2 n8r4c4 has just been eliminated.
There remains a Trid-OR1-relation between candidates: n8r4c4
Trid-ORk-relation with only one candidate => r4c4=8easy end in S2
.