I assume that you can get from
- Code: Select all
2 1 5 6 4
5 2 1
2 8
1 3 5 9 2
6 4 2
2 6 4 3 1
7 2 9 1
2 1 5
5 1 4 2
by easy (n=1) reductions to
- Code: Select all
389 2 1 3789 378 78 5 6 4
3489 6789 6789 3489 368 5 379 2 1
349 5679 5679 2 136 146 379 379 8
1 3 78 5 9 2 4678 478 67
6 4 59 78 178 178 39 359 2
89 5789 2 6 4 3 789 1 579
7 68 368 348 2 9 1 458 356
2 689 3689 1 5 4678 4678 478 367
5 1 4 378 3678 678 2 789 3679
You now need to open Milo's rules up to n>1 as follows
Rule 2: in column 7 possible 379 exists in exactly 3 rows {2,7}=379 {3,7}=379 {5,7}=39 so eliminate 7 from cell {4,7} old=4678 new=468
Rule 2: in column 7 possible 379 exists in exactly 3 rows {2,7}=379 {3,7}=379 {5,7}=39 so eliminate 7 from cell {6,7} old=789 new=89
Rule 2: in column 7 possible 379 exists in exactly 3 rows {2,7}=379 {3,7}=379 {5,7}=39 so eliminate 9 from cell {6,7} old=89 new=8
Rule 2: in column 7 possible 379 exists in exactly 3 rows {2,7}=379 {3,7}=379 {5,7}=39 so eliminate 7 from cell {8,7} old=4678 new=468
Rule 2: in column 7 possible 3798 exists in exactly 4 rows {2,7}=379 {3,7}=379 {5,7}=39 {6,7}=8 so eliminate 8 from cell {4,7} old=468 new=46
Rule 2: in column 7 possible 3798 exists in exactly 4 rows {2,7}=379 {3,7}=379 {5,7}=39 {6,7}=8 so eliminate 8 from cell {8,7} old=468 new=46
Rule 2: in box 6 possible 4678 exists in exactly 4 cells {4,7}=46 {4,8}=478 {4,9}=67 {6,7}=8 so eliminate 7 from cell {6,9} old=579 new=59
Rule 2: in box 6 possible 8395 exists in exactly 4 cells {5,7}=39 {5,8}=359 {6,7}=8 {6,9}=59 so eliminate 8 from cell {4,8} old=478 new=47
Rule 3: in row 6 possible 57 exists in exactly 2 columns{6,2}=5789 {6,9}=59 so reduce cell {6,2} old=5789 new=57
Rule 3: in row 6 possible 57 exists in exactly 2 columns{6,2}=5789 {6,9}=59 so reduce cell {6,9} old=59 new=5
Rule 3: in box 6 possible 39 exists in exactly 2 cells {5,7}=39 {5,8}=359 so reduce cell {5,8} old=359 new=39
Rule 3: in row 6 possible 897 exists in exactly 3 columns{6,1}=89 {6,2}=57 {6,7}=8 so reduce cell {6,2} old=57 new=7
Rule 3: in row 6 possible 957 exists in exactly 3 columns{6,1}=89 {6,2}=7 {6,9}=5 so reduce cell {6,1} old=89 new=9
Rule 3: in column 1 possible 384 exists in exactly 3 rows {1,1}=389 {2,1}=3489 {3,1}=349 so reduce cell {1,1} old=389 new=38
Rule 3: in column 1 possible 384 exists in exactly 3 rows {1,1}=389 {2,1}=3489 {3,1}=349 so reduce cell {2,1} old=3489 new=348
Rule 3: in column 1 possible 384 exists in exactly 3 rows {1,1}=389 {2,1}=3489 {3,1}=349 so reduce cell {3,1} old=349 new=34
Rule 3: in box 4 possible 785 exists in exactly 3 cells {4,3}=78 {5,3}=59 {6,2}=7 so reduce cell {5,3} old=59 new=5
Rule 3: in box 4 possible 859 exists in exactly 3 cells {4,3}=78 {5,3}=5 {6,1}=9 so reduce cell {4,3} old=78 new=8
Rule 3: in column 2 possible 6895 exists in exactly 4 rows {2,2}=6789 {3,2}=5679 {7,2}=68 {8,2}=689 so reduce cell {2,2} old=6789 new=689
Rule 3: in column 2 possible 6895 exists in exactly 4 rows {2,2}=6789 {3,2}=5679 {7,2}=68 {8,2}=689 so reduce cell {3,2} old=5679 new=569
Rule 3: in column 3 possible 6793 exists in exactly 4 rows {2,3}=6789 {3,3}=5679 {7,3}=368 {8,3}=3689 so reduce cell {2,3} old=6789 new=679
Rule 3: in column 3 possible 6793 exists in exactly 4 rows {2,3}=6789 {3,3}=5679 {7,3}=368 {8,3}=3689 so reduce cell {3,3} old=5679 new=679
Rule 3: in column 3 possible 6793 exists in exactly 4 rows {2,3}=6789 {3,3}=5679 {7,3}=368 {8,3}=3689 so reduce cell {7,3} old=368 new=36
Rule 3: in column 3 possible 6793 exists in exactly 4 rows {2,3}=6789 {3,3}=5679 {7,3}=368 {8,3}=3689 so reduce cell {8,3} old=3689 new=369
Rule 3: in column 9 possible 6739 exists in exactly 4 rows {4,9}=67 {7,9}=356 {8,9}=367 {9,9}=3679 so reduce cell {7,9} old=356 new=36
Rule 3: in box 1 possible 6975 exists in exactly 4 cells {2,2}=689 {2,3}=679 {3,2}=569 {3,3}=679 so reduce cell {2,2} old=689 new=69
Rule 1: in column 7 possible 7 exists only in box 3 so eliminate it from cell {3,8} old=379 new=39
Rule 1: in row 1 possible 9 exists only in box 2 so eliminate it from cell {2,4} old=3489 new=348
Rule 1: in column 9 possible 9 exists only in box 9 so eliminate it from cell {9,8} old=789 new=78
Rule 2: in row 7 possible 63 exists in exactly 2 columns {7,3}=36 {7,9}=36 so eliminate 6 from cell {7,2} old=68 new=8
Rule 2: in row 7 possible 63 exists in exactly 2 columns {7,3}=36 {7,9}=36 so eliminate 3 from cell {7,4} old=348 new=48
Rule 2: in row 7 possible 84 exists in exactly 2 columns {7,2}=8 {7,4}=48 so eliminate 8 from cell {7,8} old=458 new=45
Rule 2: in row 7 possible 84 exists in exactly 2 columns {7,2}=8 {7,4}=48 so eliminate 4 from cell {7,8} old=45 new=5
Rule 2: in row 7 possible 85 exists in exactly 2 columns {7,2}=8 {7,8}=5 so eliminate 8 from cell {7,4} old=48 new=4
Rule 2: in row 1 possible 387 exists in exactly 3 columns {1,1}=38 {1,5}=378 {1,6}=78 so eliminate 3 from cell {1,4} old=3789 new=789
Rule 2: in row 1 possible 387 exists in exactly 3 columns {1,1}=38 {1,5}=378 {1,6}=78 so eliminate 8 from cell {1,4} old=789 new=79
Rule 2: in row 1 possible 387 exists in exactly 3 columns {1,1}=38 {1,5}=378 {1,6}=78 so eliminate 7 from cell {1,4} old=79 new=9
Rule 2: in column 2 possible 698 exists in exactly 3 rows {2,2}=69 {7,2}=8 {8,2}=689 so eliminate 6 from cell {3,2} old=569 new=59
Rule 2: in column 2 possible 698 exists in exactly 3 rows {2,2}=69 {7,2}=8 {8,2}=689 so eliminate 9 from cell {3,2} old=59 new=5
Rule 2: in column 9 possible 673 exists in exactly 3 rows {4,9}=67 {7,9}=36 {8,9}=367 so eliminate 6 from cell {9,9} old=3679 new=379
Rule 2: in column 9 possible 673 exists in exactly 3 rows {4,9}=67 {7,9}=36 {8,9}=367 so eliminate 7 from cell {9,9} old=379 new=39
Rule 2: in column 9 possible 673 exists in exactly 3 rows {4,9}=67 {7,9}=36 {8,9}=367 so eliminate 3 from cell {9,9} old=39 new=9
Rule 3: in column 2 possible 69 exists in exactly 2 rows {2,2}=69 {8,2}=689 so reduce cell {8,2} old=689 new=69
Rule 3: in column 4 possible 387 exists in exactly 3 rows {2,4}=348 {5,4}=78 {9,4}=378 so reduce cell {2,4} old=348 new=38
Rule 3: in box 2 possible 614 exists in exactly 3 cells {2,5}=368 {3,5}=136 {3,6}=146 so reduce cell {2,5} old=368 new=6
Rule 3: in box 2 possible 614 exists in exactly 3 cells {2,5}=368 {3,5}=136 {3,6}=146 so reduce cell {3,5} old=136 new=16
Rule 3: in row 2 possible 3487 exists in exactly 4 columns{2,1}=348 {2,3}=679 {2,4}=38 {2,7}=379 so reduce cell {2,3} old=679 new=7
Rule 3: in row 2 possible 3487 exists in exactly 4 columns{2,1}=348 {2,3}=679 {2,4}=38 {2,7}=379 so reduce cell {2,7} old=379 new=37
Rule 3: in row 2 possible 4869 exists in exactly 4 columns{2,1}=348 {2,2}=69 {2,4}=38 {2,5}=6 so reduce cell {2,1} old=348 new=48
Rule 3: in row 2 possible 4869 exists in exactly 4 columns{2,1}=348 {2,2}=69 {2,4}=38 {2,5}=6 so reduce cell {2,4} old=38 new=8
Rule 3: in column 5 possible 3781 exists in exactly 4 rows {1,5}=378 {3,5}=16 {5,5}=178 {9,5}=3678 so reduce cell {3,5} old=16 new=1
Rule 3: in column 5 possible 3781 exists in exactly 4 rows {1,5}=378 {3,5}=16 {5,5}=178 {9,5}=3678 so reduce cell {9,5} old=3678 new=378
Rule 3: in column 5 possible 3786 exists in exactly 4 rows {1,5}=378 {2,5}=6 {5,5}=178 {9,5}=378 so reduce cell {5,5} old=178 new=78
Rule 3: in box 2 possible 3784 exists in exactly 4 cells {1,5}=378 {1,6}=78 {2,4}=8 {3,6}=146 so reduce cell {3,6} old=146 new=4
Rule 3: in box 2 possible 3714 exists in exactly 4 cells {1,5}=378 {1,6}=78 {3,5}=1 {3,6}=4 so reduce cell {1,5} old=378 new=37
Rule 3: in box 2 possible 3714 exists in exactly 4 cells {1,5}=378 {1,6}=78 {3,5}=1 {3,6}=4 so reduce cell {1,6} old=78 new=7
Rule 3: in box 2 possible 3814 exists in exactly 4 cells {1,5}=37 {2,4}=8 {3,5}=1 {3,6}=4 so reduce cell {1,5} old=37 new=3
Rule 3: in box 8 possible 6783 exists in exactly 4 cells {8,6}=4678 {9,4}=378 {9,5}=378 {9,6}=678 so reduce cell {8,6} old=4678 new=678
Rule 3: in row 2 possible 48693 exists in exactly 5 columns{2,1}=48 {2,2}=69 {2,4}=8 {2,5}=6 {2,7}=37 so reduce cell {2,7} old=37 new=3
Rule 3: in row 2 possible 48937 exists in exactly 5 columns{2,1}=48 {2,2}=69 {2,3}=7 {2,4}=8 {2,7}=3 so reduce cell {2,2} old=69 new=9
Rule 3: in row 2 possible 46937 exists in exactly 5 columns{2,1}=48 {2,2}=9 {2,3}=7 {2,5}=6 {2,7}=3 so reduce cell {2,1} old=48 new=4
Rule 3: in box 1 possible 38467 exists in exactly 5 cells {1,1}=38 {2,1}=4 {2,3}=7 {3,1}=34 {3,3}=679 so reduce cell {3,3} old=679 new=67
Rule 3: in box 1 possible 38469 exists in exactly 5 cells {1,1}=38 {2,1}=4 {2,2}=9 {3,1}=34 {3,3}=67 so reduce cell {3,3} old=67 new=6
Rule 3: in box 1 possible 38679 exists in exactly 5 cells {1,1}=38 {2,2}=9 {2,3}=7 {3,1}=34 {3,3}=6 so reduce cell {3,1} old=34 new=3
Rule 3: in box 1 possible 84679 exists in exactly 5 cells {1,1}=38 {2,1}=4 {2,2}=9 {2,3}=7 {3,3}=6 so reduce cell {1,1} old=38 new=8
Rule 1: in row 2 possible 3 exists only in box 3 so eliminate it from cell {3,7} old=379 new=79
Rule 1: in row 2 possible 3 exists only in box 3 so eliminate it from cell {3,8} old=39 new=9
Rule 1: in column 4 possible 3 exists only in box 8 so eliminate it from cell {9,5} old=378 new=78
Rule 1: in column 8 possible 3 exists only in box 6 so eliminate it from cell {5,7} old=39 new=9
Rule 1: in row 9 possible 6 exists only in box 8 so eliminate it from cell {8,6} old=678 new=78
Rule 1: in column 2 possible 6 exists only in box 7 so eliminate it from cell {7,3} old=36 new=3
Rule 1: in column 2 possible 6 exists only in box 7 so eliminate it from cell {8,3} old=369 new=39
Rule 1: in box 7 possible 6 exists only in row 8 so eliminate it from cell {8,7} old=46 new=4
Rule 1: in box 7 possible 6 exists only in row 8 so eliminate it from cell {8,9} old=367 new=37
Rule 1: in box 9 possible 6 exists only in column 9 so eliminate it from cell {4,9} old=67 new=7
Rule 1: in box 2 possible 7 exists only in column 6 so eliminate it from cell {5,6} old=178 new=18
Rule 1: in box 2 possible 7 exists only in column 6 so eliminate it from cell {8,6} old=78 new=8
Rule 1: in box 2 possible 7 exists only in column 6 so eliminate it from cell {9,6} old=678 new=68
Rule 1: in box 8 possible 7 exists only in row 9 so eliminate it from cell {9,8} old=78 new=8
Rule 1: in box 2 possible 8 exists only in column 4 so eliminate it from cell {5,4} old=78 new=7
Rule 1: in box 2 possible 8 exists only in column 4 so eliminate it from cell {9,4} old=378 new=37
Rule 1: in column 3 possible 9 exists only in box 7 so eliminate it from cell {8,2} old=69 new=6
The final few reductions are simple and obvious
The solution emerges as
- Code: Select all
8 2 1 9 3 7 5 6 4
4 9 7 8 6 5 3 2 1
3 5 6 2 1 4 7 9 8
1 3 8 5 9 2 6 4 7
6 4 5 7 8 1 9 3 2
9 7 2 6 4 3 8 1 5
7 8 3 4 2 9 1 5 6
2 6 9 1 5 8 4 7 3
5 1 4 3 7 6 2 8 9
[/code]