You might want to bone up on AIC's and also Advanced ALS's in AIC's before tackling this post.
Here is the original puzzle...
- Code: Select all
*-----------*
|.4.|...|.2.|
|9..|...|1.3|
|..2|3.7|9..|
|---+---+---|
|...|1.4|...|
|8..|...|..4|
|...|7.5|.9.|
|---+---+---|
|..8|5.2|6..|
|1.9|...|..8|
|.6.|...|.7.|
*-----------*
...and this is as far as you can get with basic methods.
- Code: Select all
*-----------------------------------------------------------------------------*
| 356 4 1356 | 689 1569 D1689 | 578 2 567 |
| 9 A578 567 |-2468 2456 68 | 1 4568 3 |
| 56 B18 2 | 3 C14 7 | 9 48 56 |
|-------------------------+-------------------------+-------------------------|
| 23567 23579 3567 | 1 23689 4 | 23578 3568 2567 |
| 8 123579 13567 | 269 2369 369 | 2357 1356 4 |
| 2346 123 1346 | 7 2368 5 | 238 9 126 |
|-------------------------+-------------------------+-------------------------|
| 347 *37 8 | 5 *13479 2 | 6 13 19 |
| 1 *2357 9 | 46 *3467 36 | 2345 35 8 |
| 2345 6 345 |F489 1349 E1389 | 2345 7 1259 |
*-----------------------------------------------------------------------------*
Step 1:
The starred cells in r78c25 locate a 37 uniqueness rectangle with 2 strong links in the 7's. This implies r8c5 <> 3.
Step 2:
The first AIC. (strong inference: '=', weak inference: '-')
A8 = B8 - B1 = C1 - D1 = E1 - E8 = F8 => r2c4 <> 8
The problem with this notation is that you need a picture to figure out where A, B, C, etc. is for every chain, and that is just not practical with this puzzle. So I am going to adopt the following shorthand. I start with the digit premise on one end of the chain along with its location. I include all strong and weak inferences. Whenever either the digit premise or the location changes, I note that. So the above AIC would be rewritten as follows...
8[r2c2]=[r3c2]-1=[r3c5]-[r1c6]=[r9c6]-8=[r9c4] => r2c4 <> 8
Hopefully, that is compact, readable, and easy enough to understand and duplicate.
Step 3:
3[r1c1]=[r1c3]-1=[r3c2]-[r3c5]=4-[r7c5]=[r7c1] => r7c1 <> 3
Step 4:
3[r1c1]=[r1c3]-1=[r3c2]-[r3c5]=4-[r7c5]=[r7c1]-7=[r4c1] => r4c1 <> 3
Step 5:
An AIC using ALS subsets. I'll use a picture for the first one...
- Code: Select all
*-----------------------------------------------------------------------------*
| 356 4 1356 |A689' 1569 A1'689 | 578 2 567 |
| 9 D578 567 | 246 2456 A68' | 1 4568 3 |
| 56 C18 2 | 3 B14 7 | 9 48 56 |
|-------------------------+-------------------------+-------------------------|
| 2567 23579 3567 | 1 23689 4 | 23578 3568 2567 |
| 8 123579 13567 | 269 2369 369 | 2357 1356 4 |
| 2346 123 1346 | 7 2368 5 | 238 9 126 |
|-------------------------+-------------------------+-------------------------|
| 47 37 8 | 5 13479 2 | 6 13 19 |
| 1 2357 9 | 46 467 36 | 2345 35 8 |
| 2345 6 345 | 489 1349 1389 | 2345 7 1259 |
*-----------------------------------------------------------------------------*
Looking at ALS set A, note that if you exclude the 6's from the set, you end up with the primed digits remaining. Thus we have...
A6=A(1'&8'&9')-B1=C1-C8=D8-A(1'&8'&9')=A6 => A has to contain a 6, therefore r1c5 & r2c45 <> 6. Using only the primes we need in the new notation, this becomes...
6[r1c46,r2c6]=(1&8'&9)-1[r3c5]=[r3c2]-8=[r2c2] -(1&8'&9)[r1c46,r2c6]=6 => r1c5 & r2c45 <> 6
Step 6:
3[r1258c6]=(1&6&8'&9)-1[r3c5]=[r3c2]-8=[r2c2] -(1&6&8'&9)[r1258c6]=3 => r9c6 <> 3
Step 7:
9[r1258c6]=(1&3&6&8')-1[r3c5]=[r3c2]-8=[r2c2] -(1&3&6&8')[r1258c6]=9 => r9c6 <> 9
Step 8:
No primes in this one, so this is just a regular ALS in a chain
(2&4&6)[r258c4]=9-[r5c6]=[r1c6]-1=[r9c6]-8=[r9c4] => r9c4 <> 4
Step 9:
9[r5c4]=(8&9)[r19c4]-6[r1c4]=[r12c6]-[r58c6]=(3&9)-9[r5c4] loop => r5c25 & r4c5 <> 9, r4c2 = 9
Step 10:
When you have a UR with two strong links forming a corner on one of the base digits (b in this case)...
- Code: Select all
Wab---baX
|
---|-------
|
Yab abZ
...there is a hidden weak UR link between the 'a' in the corner Wab-cell and the 'ab' in the opposing abZ-cell. Cells r15c46 contain a 69-UR with two strong links and an exploitable weak link...
6[r128c6]=[r5c6]-UR-(6or9)[r1c4]=8-[r2c6]=6 => r5c6 <> 6
Step 11:
4[r9c7]=[r8c7]-[r8c4]=[r2c4]-2=[r5c4]-9=[r5c6]-3=[r8c6]- [r8c8]=5 => r9c7 <> 5
Step 12:
1[r1c3]=[r3c2]-[r3c5]=4-[r2c4]=[r8c4]-[r8c7]=[r9c7]-[r9c3]=[r6c3] => r6c3 <> 1
Step 13:
Really just coloring here...
1[r9c6]=[r1c6]-[r1c3]=[r5c3]-[r5c8]=[r7c8] => r7c5 & r9c9 <> 1
Step 14:
At this point I was stuck for awhile. Here is the grid...
- Code: Select all
*--------------------------------------------------------------------*
| 356 4 #1356 |*689 *159 *1689 |#578 2 567 |
| 9 578 567 | 24 245 68 | 1 4568 3 |
| 56 18 2 | 3 14 7 | 9 48 56 |
|----------------------+----------------------+----------------------|
| 2567 9 3567 | 1 2368 4 | 23578 3568 2567 |
| 8 12357 13567 | 269 236 39 | 2357 1356 4 |
| 2346 123 346 | 7 2368 5 | 238 9 126 |
|----------------------+----------------------+----------------------|
| 47 37 8 | 5 3479 2 | 6 13 19 |
| 1 2357 9 | 46 467 36 | 2345 35 8 |
| 2345 6 345 |*89 *1349 *18 | 234 7 #259 |
*--------------------------------------------------------------------*
I noticed a potential MUG with the digits 189 in the starred cells (r19c456). There seemed to be too many extra digits to do much with it, but then I noted that to avoid the deadly MUG pattern, you had to have (r1c3 = 1) or (r1c7 = 8) or (r9c9 = 9) be true. Now (r1c7 = 8 or r9c9 = 9 is true) is just another way of saying that there is a strong inference between those two candidates. Look what happens when we start creating a chain with that inference
8[r1c7]=9[r9c9]-[r7c9]=1-[r6c9]=[r6c2]-[r3c2]=[r1c3]
|
8[r3c8]=[r3c2]-1=[r1c3]
Amazing, but true! The second and third MUG avoidance candidates, when OR'ed together actually force the first MUG avoidance candidate. (When you have a big molecular method enzyme sitting in your face for days, this is actually fairly easy to spot.) Therefore, we can safely assume that the first MUG avoidance candidate is true. r1c3 = 1.
This unlocks a bit of basic solving, until you get stuck here...
- Code: Select all
*--------------------------------------------------------------------*
| 3 4 1 | 69 5 689 | 78 2 67 |
| 9 57 567 | 24 24 68 | 1 568 3 |
| 56 8 2 | 3 1 7 | 9 4 56 |
|----------------------+----------------------+----------------------|
| 2567 9 3567 | 1 2368 4 | 23578 3568 2567 |
| 8 12357 3567 | 269 236 39 | 2357 1356 4 |
| 246 123 346 | 7 2368 5 | 238 9 126 |
|----------------------+----------------------+----------------------|
| 47 37 8 | 5 3479 2 | 6 13 19 |
| 1 2357 9 | 46 467 36 | 2345 35 8 |
| 245 6 345 | 8 349 1 | 234 7 259 |
*--------------------------------------------------------------------*
Step 15:
(5&7)[r27c2]=3-[r7c8]=1-[r5c8]=[r5c2] => r5c2 <> 5 or 7
Step 16:
5[r3c9]=[r3c1]-[r2c2]=[r8c2]-[r9c13]=[r9c9] => r4c9 <> 5
Step 17:
5[r2c8]=[r3c9]-[r9c9]=[r9c13]-[r8c2]=[r2c2] => r2c3 <> 5
Step 18:
7[r5c7]=[r5c3]-[r2c3]=6-[r2c6]=8-[r2c8]=[r1c7] => r1c7 <> 7
You get to solve a few more things and get to here
- Code: Select all
*-----------------------------------------------------------*
| 3 4 1 | 69 5 69 | 8 2 7 |
| 9 57 67 | 24 24 8 | 1 56 3 |
| 56 8 2 | 3 1 7 | 9 4 56 |
|-------------------+-------------------+-------------------|
| 2567 9 3567 | 1 236 4 | 2357 8 26 |
| 8 123 3567 | 269 236 39 | 2357 1356 4 |
| 246 123 346 | 7 8 5 | 23 9 126 |
|-------------------+-------------------+-------------------|
| 47 37 8 | 5 3479 2 | 6 13 19 |
| 1 2357 9 | 46 467 36 | 2345 35 8 |
| 245 6 345 | 8 349 1 | 234 7 259 |
*-----------------------------------------------------------*
Step 19:
6[r3c1]=[r3c9]-[r46c9]=[r5c8]-[r5c45]=[r4c5] => r4c1 <> 6
Step 20:
Finned swordfish in 3's r469c357, fin in r6c2 => r5c3 <> 3
Step 21:
Even though a 6 is missing, you can reconstitute it and create a potential 69 deadly UR pattern in r15c46. Only the 2 or the 3 in those cells will avoid the deadly pattern. Since one of those digits must be true, a strong inference exists between them...
2[r5c4]=UR=3[r5c6]-[r8c6]=6-[r8c4]=4-[r2c4]=2 loop => r8c5 <> 6, and then a box-box interaction => r5c4 <> 6
Step 22:
2[r8c7]=[r8c2]-5=[r2c2]-7=[r2c3]-[r5c3]=[r5c7] => r5c7 <> 2
Step 23:
3[r6c7]=2-[r8c7]=[r8c2]-5=[r2c2]-7=[r2c3]-[r5c3]=[r5c7] => r5c7 <> 3
Step 24:
3[r56c2]=(1&2)-2[r8c2]=[r8c7]-[r6c7]=3 => r6c3 <> 3
Step 25:
3[r6c7]=[r6c2]-[r4c3]=[r9c3] => r9c7 <> 3
Step 26:
7[r7c2]=3-[r9c3]=[r9c5]-9=[r7c5] => r7c5 <> 7, r8c5 = 7, and a little clean up gives...
- Code: Select all
*-----------------------------------------------------------*
| 3 4 1 | 69 5 69 | 8 2 7 |
| 9 57 67 | 24 24 8 | 1 56 3 |
| 56 8 2 | 3 1 7 | 9 4 56 |
|-------------------+-------------------+-------------------|
| 257 9 3567 | 1 236 4 | 2357 8 26 |
| 8 123 567 | 29 236 39 | 57 1356 4 |
| 246 123 46 | 7 8 5 | 23 9 126 |
|-------------------+-------------------+-------------------|
| 47 37 8 | 5 349 2 | 6 13 19 |
| 1 235 9 | 46 7 36 | 2345 35 8 |
| 245 6 345 | 8 349 1 | 24 7 259 |
*-----------------------------------------------------------*
Step 27:
5[r3c9]=[r9c9]-9=[r9c5]-3=[r9c3]-[r7c2]=7-[r2c2]=5 => r3c1 & r2c8 <> 5 which cracks the puzzle.
[All done by hand using the molecular method to bring out AIC's]