Anonymous wrote:Can anyone give me a hand with this puzzle? I've come to the trial and error stage. Logic doesn't seem to work for me....
- Code: Select all
9-- 7-8 -45
47- -95 ---
85- -42 -7-
649 581 723
237 964 158
--- 273 496
7-- 856 -34
--- --9 -67
3-- --7 ---
cheers
I am not conversant with the terminology used for puzzles such as this; however, I have come up with some mathematical techniques that allow me to solve some of these puzzles. Therefor, I will explain the terminology that I use and go from there.
I number the boxes, with the upper left box being box #1 and the lower right box being box #81.
By writing down (or whatever) the numbers that are not automatically eliminated because they are already present in the same row, column or 3 X 3 that each respective open box is in, I generated the following Raw Possibility Matrix (God, I hope I got this right--there's probably a web site or a download or something that'll do this automatically--and if not I can write one--but I don't know where it is):
- Code: Select all
-----------------------------------------------------------
| 9 | 126 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 15 | 18 | 158 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 12 | 12 # 8 | 5 | 6 # 29 | 3 | 4 |
-----------------------------------------------------------
| 15 | 128 | 12458 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 1269 | 124568 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
Please check boxes 56 and 57. These can only hold the values of 1 or 2. Since this is the case, no other boxes in that 3 X 3 or row can hold either of those values.
- Code: Select all
-----------------------------------------------------------
| 9 | 126 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 15 | 18 | 158 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 12 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 15 | 8 | 458 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 4568 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
Using this information, one can easily establish that box 65 must contain the number 8 (its raw possibilities are only 1, 2 or 8).
This removes the possibility of any other box in that row, column or 3 X 3 containing the number 8.
- Code: Select all
-----------------------------------------------------------
| 9 | 126 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 15 | 1 | 158 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 12 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 15 | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
Because of this, box number 47 must contain the number 1 (it is in the same column as box 65, and its raw possibilities are 1 and 8).
This removes the number 1 from the possibilities in the row, column and 3 X 3 in which box 47 is found.
- Code: Select all
-----------------------------------------------------------
| 9 | 26 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 5 | 1 | 58 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 2 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 15 | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
Because of this, box 46 must contain the number 5--its raw possibilities are 1 and 5. Also because of this, box 56 must contain the number 2--it is in the same row as box 47.
Look at the lower left 3 X 3 carefully.
The 5 in box 46 removes that possibility from all other boxes in its column.
- Code: Select all
-----------------------------------------------------------
| 9 | 26 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 5 | 1 | 58 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 2 | 12 # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| 1 | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
Thus, box 64 must contain the number 1--it is in the same column as box 46, and its raw possibilities are 1 and 5.
Because box 56 contains the number 2, this removes the possibility that any other box in its row contains that number.
- Code: Select all
-----------------------------------------------------------
| 9 | 26 | 1236 # 7 | 136 | 8 # 236 | 4 | 5 |
-----------------------------------------------------------
| 4 | 7 | 1236 # 136 | 9 | 5 # 23368 | 138 | 129 |
-----------------------------------------------------------
| 8 | 5 | 136 # 136 | 4 | 2 # 369 | 7 | 19 |
===========================================================
| 6 | 4 | 9 # 5 | 8 | 1 # 7 | 2 | 3 |
-----------------------------------------------------------
| 2 | 3 | 7 # 9 | 6 | 4 # 1 | 5 | 8 |
-----------------------------------------------------------
| 5 | 1 | 58 # 2 | 7 | 3 # 4 | 9 | 6 |
===========================================================
| 7 | 2 | *1* # 8 | 5 | 6 # 9 | 3 | 4 |
-----------------------------------------------------------
| *1* | 8 | 45 # 134 | 123 | 9 # 25 | 6 | 7 |
-----------------------------------------------------------
| 3 | 69 | 456 # 14 | 12 | 7 # 2589 | 18 | 129 |
-----------------------------------------------------------
Therefor, box 57 must contain the number 1--it is in the same 3 X 3 as box 56, and its raw possibilities are 1 and 2.
But this is impossible. Box 57 cannot contain the number 1 because box 64, in the same 3 X 3, was already shown to contain the number 1.
Therefor, I conclude that there is an error in your existing solution to this puzzle. Please provide the raw puzzle.