There's gotta be a skyscraper or something here?

Post the puzzle or solving technique that's causing you trouble and someone will help

Re: There's gotta be a skyscraper or something here?

Postby Hajime » Thu Aug 10, 2023 8:03 am

Original puzzle:
..5....62.63..9...........4.....67.3..67.5...1..8.....8.12..6........53..4....8..

From the partial solution:
There is no skyscraper, but an unique rectangle type 1
r39,c45 => (-56)r9c5 ; stte
User avatar
Hajime
 
Posts: 1385
Joined: 20 April 2018
Location: Fryslân

Re: There's gotta be a skyscraper or something here?

Postby Leren » Thu Aug 10, 2023 9:18 am

Code: Select all
*-------------------------------------------------*
| 4     18     5    | 3   178    178 | 9  6   2   |
|a27    6      3    | 4  b28     9   | 1  78  5   |
| 279   1289   289  | 56  56     128 | 3  78  4   |
|-------------------+----------------+------------|
|d259  d2589  d2489 | 19 c1249   6   | 7  159 3   |
| 39-2  239    6    | 7   12349  5   | 24 19  8   |
| 1     23579  2479 | 8   2349   234 | 24 59  6   |
|-------------------+----------------+------------|
| 8     35     1    | 2   3579   37  | 6  4   79  |
| 6     279    279  | 19  48     48  | 5  3   179 |
| 35    4      79   | 56  135679 137 | 8  2   179 |
*-------------------------------------------------*

(2) r2c1 = r2c5 - r4c5 = (2) r4c123 => - 2 r5c1; There was a Skyscraper as shown, but it doesn't solve the puzzle.

The UR does most of the work but there is no stte finish, even with the Skyscraper. A few basic moves are still required.

Leren
Leren
 
Posts: 5123
Joined: 03 June 2012

Re: There's gotta be a skyscraper or something here?

Postby Hajime » Thu Aug 10, 2023 9:43 am

Hi Leren, You are right. It must be "basics to the end" (btte)
Btw. your skyscraper is a grouped skyscraper.
User avatar
Hajime
 
Posts: 1385
Joined: 20 April 2018
Location: Fryslân

Re: There's gotta be a skyscraper or something here?

Postby P.O. » Thu Aug 10, 2023 10:31 am

after basics:
Hidden Text: Show
Code: Select all
( n1r2c7   n2r9c8   n4r7c8   n6r6c9   n5r2c9   n8r5c9   n4r2c4
  n4r1c1 )

PAIR COL: ((1 7 3) (3 9)) ((3 7 3) (3 9)) 
(((3 8 3) (7 8 9)) ((5 7 6) (2 4 9)) ((6 7 6) (2 4 9)))

TRIPLET BOX: ((8 2 7) (2 7 9)) ((8 3 7) (2 7 9)) ((9 3 7) (7 9))
(((7 2 7) (3 5 7 9)) ((8 1 7) (2 6 7 9)) ((9 1 7) (3 5 6 7 9)))

( n6r8c1 )

intersections:
((((7 0) (2 1 1) (2 7)) ((7 0) (3 1 1) (2 7 9)))
 (((7 0) (1 5 2) (1 3 7 8)) ((7 0) (1 6 2) (1 3 7 8))))

PAIR COL: ((4 4 5) (1 9)) ((8 4 8) (1 9)) 
(((1 4 2) (1 3)) ((3 4 2) (1 3 5 6)) ((9 4 8) (1 3 5 6 9)))

( n3r1c4   n9r1c7   n3r3c7 )

QUAD ROW: ((8 2 7) (2 7 9)) ((8 3 7) (2 7 9)) ((8 4 8) (1 9)) ((8 9 9) (1 7 9))
(((8 5 8) (1 4 7 8 9)) ((8 6 8) (1 4 7 8)))

QUAD BOX: ((1 5 2) (1 7 8)) ((1 6 2) (1 7 8)) ((2 5 2) (2 8)) ((3 6 2) (1 2 8))
(((3 5 2) (1 2 5 6 8)))

which is the resolution state shown by Leren:
Code: Select all
4       18      5       3       178     178     9       6       2               
27      6       3       4       28      9       1       78      5               
279     1289    289     56      56      128     3       78      4               
259     2589    2489    19      1249    6       7       159     3               
239     239     6       7       12349   5       24      19      8               
1       23579   2479    8       2349    234     24      59      6               
8       35      1       2       3579    37      6       4       79               
6       279     279     19      48      48      5       3       179             
35      4       79      56      135679  137     8       2       179         

there are several one step solutions with short forcing chains, but not suitable for manual solver i guess
this one seems simple:
Code: Select all
8r3c8 => r8c5 <> 4,8
 r3c8=8 - c3n8{r3 r4} - r4n4{c3 c5}
 r3c8=8 - r2n8{c8 c5}
 
=> r3c8 <> 8
ste.
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: There's gotta be a skyscraper or something here?

Postby pjb » Fri Aug 11, 2023 11:36 pm

Code: Select all
 4       18      5      | 3      17-8    b78     | 9      6      2     
 27      6       3      | 4     a28       9      | 1      78     5     
 279     1289    289    | 56     56      b128    | 3      78     4     
------------------------+------------------------+---------------------
 259     2589    2489   | 19     1249     6      | 7      159    3     
 239     239     6      | 7      12349    5      | 24     19     8     
 1       23579   2479   | 8      2349     24-3   | 24     59     6     
------------------------+------------------------+---------------------
 8       35      1      | 2      579-3   b37     | 6      4      79     
 6       279     279    | 19     48       48     | 5      3      179   
 35      4       79     | 56     15679-3 b137    | 8      2      179   


A double ALS provides a nice one step btte alternative:
(2=8)r2c5 - (8=2)r1379c6 - loop

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia


Return to Help with puzzles and solving techniques