## The Principle of &#931; 45... ( needs work and spell che

Advanced methods and approaches for solving Sudoku puzzles
removed
Last edited by StrmCkr on Sun May 26, 2013 7:40 pm, edited 1 time in total.
Some do, some teach, the rest look it up.

StrmCkr

Posts: 889
Joined: 05 September 2006

If I understand you, you have two overlapping Almost Almost locked sets (a4,b4,h4=12589) and (j4,b4,h4=12589) which are strongly linked twice to a 3rd AALS (e4=128). The question is can this configuration allow an elimination? This is a tough one to figure out theoretically, so, just as you did, I've summarized all the possibilities given the placement of a candidate (indicated by a "*"). If an elimination was possible based on the linking between the sets then one of the possibilities should result in an invalid grid. Unfortunately this is not the case, so I'd have to conclude that the arrangement doesn't yield the proposed elimination. It does avoid the problem of an invalid conclusion caused by swapping the 2 and 9, so you've made progress.
Code: Select all
`A4=29   B4=1259 E4=128  H4=2589 J4=592*      159     18      589     599*      12      128     28      529      1*      28      2589    599       2*      1       8       52       5*      1       8       92       9*      1       8       529      259     1*      2589    599       1       2*      8       529      1       8*      259     599       1       8       2*      52       1       8       5*      929      1259    12      8*      592       1       8       9*      529      129     128     289     5*2       15      18      58      9*`
Mike Barker

Posts: 458
Joined: 22 January 2006

removed
Some do, some teach, the rest look it up.

StrmCkr

Posts: 889
Joined: 05 September 2006

Previous