I tend to like solving methods which make use of the work and results from previous methods. The Molecular Method uses the work produced by the multiple colors method to feed Alternate Inference Chains. I call it the Molecular Method because it creates freeform diagrams with lines (weak inferences) and double lines (strong inferences) linking up alphanumerics, which look like depictions of large organic molecules.
You start by coloring all the candidates of your grid as completely as possible. As a first example, I am going to take Ruud's April 12 Daily Nightmare.
- Code: Select all
*-----------*
|..8|6..|..9|
|...|.4.|...|
|.9.|8.5|..1|
|---+---+---|
|...|..6|..2|
|.39|...|16.|
|8..|7..|...|
|---+---+---|
|7..|9.1|.3.|
|...|.2.|...|
|4..|..7|9..|
*-----------*
Using simple coloring, multiple coloring, and either box-box coloring or finned x-wings, I got here...
- Code: Select all
*--------------------------------------------------------------------*
| 13 124 8 | 6 137 23 | 2457 2457 9 |
| 1236 57 57 | 12 4 9 | 2368 28 368 |
| 236 9 24 | 8 37 5 | 23467 247 1 |
|----------------------+----------------------+----------------------|
| 15 147 147 | 135 1359 6 | 3458 4589 2 |
| 25 3 9 | 245 58 48 | 1 6 7 |
| 8 1246 1246 | 7 1359 23 | 345 459 345 |
|----------------------+----------------------+----------------------|
| 7 2568 256 | 9 568 1 | 24568 3 4568 |
| 9 1568 1356 | 345 2 48 | 5678 1578 568 |
| 4 12568 12356 | 35 3568 7 | 9 1258 568 |
*--------------------------------------------------------------------*
Now, at this point, I am expecting that some form of chain is going to be necessary to advance. But I have all of this filtered coloring work...
- Code: Select all
*--------------------------* *--------------------------*
| 1 1 .| . A1 .| . . .| | . 2 .| . . A2| 2 2 .|
|A1 . .|a1 . .| . . .| | 2 . .|a2 . .| 2 2 .|
| . . .| . . .| . . 1| | 2 . 2| . . .| 2 2 .|
|--------+--------+--------| |--------+--------+--------|
| 1 1 1|A1 1 .| . . .| | . . .| . . .| . . 2|
| . . .| . . .| 1 . .| |a2 . .|A2 . .| . . .|
| . 1 1| . 1 .| . . .| | . 2 2| . . a2| . . .|
|--------+--------+--------| |--------+--------+--------|
| . . .| . . 1| . . .| | . 2 2| . . .|B2 . .|
| . 1 1| . . .| . b1 .| | . . .| . 2 .| . . .|
| . 1 1| . . .| . B1 .| | . 2 2| . . .| . b2 .|
*--------------------------* *--------------------------*
*--------------------------*
| 3 . .| . 3 A3| . . .|
| 3 . .| . . .| 3 . B3|
| 3 . .| . 3 .| 3 . .|
|--------+--------+--------|
| . . .| 3 3 .| 3 . .| etc.
| . 3 .| . . .| . . .|
| . . .| . 3 a3| 3 . b3|
|--------+--------+--------|
| . . .| . . .| . 3 .|
| . . d3|D3 . .| . . .|
| . . D3| 3 3 .| . . .|
*--------------------------*
These "colors" can easily be appended after the appropriate digits in my candidate list...
- Code: Select all
*----------------------------------------------------------------------*
| 13 124A 8 | 6 1a37b 2A3A | 245d7 245D7 9 |
| 1a236a 5a7a 5A7A | 1A2a 4 9 | 2368 28 3B68 |
| 236A 9 24a | 8 37B 5 | 2346a7 247 1 |
|----------------------+----------------------+------------------------|
| 15b 147A 147a | 1a35 1359a 6 | 3458b 458B9A 2 |
| 2a5B 3 9 | 2A4B5 58A 4b8a | 1 6 7 |
| 8 1246D 1246d | 7 1359A 2a3a | 345 459a 3b4D5 |
|----------------------+----------------------+------------------------|
| 7 2568 256 | 9 56b8 1 | 2B4D568 3 4d568 |
| 9 1568 13d56 | 3D4b5 2 4B8A | 567d8 1b57D8 568 |
| 4 12568 123D56 | 35 356B8 7 | 9 1B2b58 568 |
*----------------------------------------------------------------------*
Because bivalue cells are so useful in chains, you want to note weak links to other colored cells and parenthetically color the bivalue digit with its conjugate. For example the 1 in r1c1 sees the 1a in the same box. Thus we parenthetically color it 1(A). Do this for all bivalue cell candidates not already colored.
- Code: Select all
------------------------------------------------------------------------
1(A)3(a) 124A 8 | 6 1a37b 2A3A | 245d7 245D7 9
1a236a 5a7a 5A7A | 1A2a 4 9 | 2368 2(A)8 3B68
236A 9 24a | 8 3(a)7B 5 | 2346a7 247 1
------------------------+----------------------+------------------------
1(A)5b 147A 147a | 1a35 1359a 6 | 3458b 458B9A 2
2a5B 3 9 | 2A4B5 5(b)8A 4b8a | 1 6 7
8 1246D 1246d | 7 1359A 2a3a(B)| 345 459a 3b4D5
------------------------+----------------------+------------------------
7 2568 256 | 9 56b8 1 | 2B4D568 3 4d568
9 1568 13d56 | 3D4b5 2 4B8A | 567d8 1b57D8 568
4 12568 123D56 | 3(d)5 356B8 7 | 9 1B2b58 568
------------------------------------------------------------------------
Now you can start creating your molecules. You start with a strong link as your nucleus. I generally like to start with a strong color link that is combined in cells with a lot of other colored candidates. In this case I picked 1a = 1A. At this point you can start a diagram.
- Code: Select all
1a = 1A
Next I noted that r1c5 had both a 1a and a 7b. Thus I could add the following to my diagram...
- Code: Select all
7b = 7B
/
1a = 1A
Hey, it is an AIC chain. Either 7B or 1A must be true. Unfortunately, no 1A cells containing a 7 see a 7B cell. Also no 7B cells contain a 1 and see a 1A cell, so no reductions. I noted that r2c1 contained both a 1a and a 6a. Add to the diagram.
- Code: Select all
6A = 6a 7b = 7B
\ /
1a = 1A
Again, 1A and/or 6A must be true, but no good reductions there. In r1c1 there is a bivalue cell weakly linked with 1a.
- Code: Select all
6A = 6a 7b = 7B
\ /
1a = 1A
/
3(a) = 1(A)
This will connect up with the 3A = 3a conjugate colors. r1c6 is a useful cell containing a 3A = 2A inference. Add that to the diagram.
- Code: Select all
6A = 6a 7b = 7B
\ /
1a = 1A
/
3(a) = 1(A)
/
2A = 3A
Now we have an AIC which shows that 2A and/or 1A is true. Cell r2c4 contains both 1A and 2a. We can either attempt a deduction right there, or just add it to the diagram.
- Code: Select all
6A = 6a 7b = 7B
\ /
1a = 1A
/ \
3(a) = 1(A) 2a = 2A
/
2A = 3A
Now it is obvious. We have an AIC chain which shows 2A and/or 2A is true. Thus 2A must be true (and 2a false).
The Molecular Method is probably quite similar to Medusa and other multi-digit coloring methods. It is a slightly more mechanical way of approaching chains which uses coloring work you may have already done to keep track of those pesky bilocation conjugates that can be hard to find when you are working without computer filters to aid you.