Nick70 wrote:.......It's a theorem following from the BUG principle (which has been proven by Nick67).
Thank you, Nick 67 for your contribution.
Nick70 wrote:.......It's a theorem following from the BUG principle (which has been proven by Nick67).
Nick70 wrote:Here is an application of the BUG principle with three quadrivalue cells:
- Code: Select all
7 2 69 | 5 3 69 | 8 1 4
89 4689 5 | 1 2 48 | 3 69 7
1 3 48 | 69 7 48 | 5 69 2
-------------------+--------------------+-------------------
6 1 2 | 8 4 5 | 9 7 3
5 47 47 | 3 9 1 | 6 2 8
3 89 89 | 7 6 2 | 1 4 5
-------------------+--------------------+-------------------
89 6789 6789 | 4 1 3 | 2 5 69
4 69 3 | 2 5 69 | 7 8 1
2 5 1 | 69 8 7 | 4 3 69
Questions: is there only one possible BUG for any puzzle? Or if there are more than one, are they equivalently useful in solving, or will they be found eventually after multiple BUG hunts?
The BUG principle allows us to say that either r2c2=89 or r7c2=69 or r7c3=89.
Putting those together, we can say that r2c2=489, r7c2=679 and r7c3=789
Nick70 wrote:Here is the first example of a BUG application with a cell containing more than 3 candidates:
- Code: Select all
1 28 3 | 4 5 6 | 7 289 89
4 5 7 | 3 89 29 | 12 6 18
6 28 9 | 7 18 12 | 4 5 3
----------------+-----------------+----------------
9 7 4 | 5 3 8 | 12 12 6
5 3 6 | 19 2 19 | 8 4 7
8 1 2 | 6 4 7 | 9 3 5
----------------+-----------------+----------------
27 9 1 | 28 6 3 | 5 78 4
27 6 5 | 28 19 4 | 3 1789 189
3 4 8 | 19 7 5 | 6 19 2
However we can also apply the BUG principle to say that r1c8=8, r8c8=19, r8c9=8 (each one of the three forces the other two through cells r7c8 and r9c8).
4 78 6 | 3 9 5 | 78 2 1
37 9 25 | 8 1 26 | 57 36 4
38 1 25 | 7 4 26 | 58 9 36
-------------------+--------------------+-------------------
2 36 14 | 14 5 8 | 36 7 9
16 78 378 | 16 2 9 | 4 5 38
9 5 48 | 46 3 7 | 2 1 68
-------------------+--------------------+-------------------
78 2 78 | 9 6 3 | 1 4 5
5 4 9 | 2 8 1 | 36 36 7
16 36 13 | 5 7 4 | 9 8 2
MadOverlord wrote:Questions: is there only one possible BUG for any puzzle? Or if there are more than one, are they equivalently useful in solving, or will they be found eventually after multiple BUG hunts?
2 7 3 | 6 8 4 | 19 5 19
9 1 4 | 5 7 3 | 8 2 6
58 6 58 | 9 1 2 | 34 7 34
--------------+---------------+----------------
6 38 7 | 4 5 1 | 2 389 389
48 2 9 | 3 6 7 | 5 148 148
45 35 1 | 8 2 9 | 6 34 7
--------------+---------------+----------------
1 58 258 | 7 3 6 | 49 489 2489
7 9 6 | 2 4 8 | 13 13 5
3 4 28 | 1 9 5 | 7 6 28
2 7 3 | 6 8 4 | 19 5 19
9 1 4 | 5 7 3 | 8 2 6
58 6 58 | 9 1 2 | 34 7 34
--------------+---------------+----------------
6 38 7 | 4 5 1 | 2 89 39
48 2 9 | 3 6 7 | 5 14 18
45 35 1 | 8 2 9 | 6 34 7
--------------+---------------+----------------
1 58 25 | 7 3 6 | 49 89 24
7 9 6 | 2 4 8 | 13 13 5
3 4 28 | 1 9 5 | 7 6 28
2 7 3 | 6 8 4 | 19 5 19
9 1 4 | 5 7 3 | 8 2 6
58 6 58 | 9 1 2 | 34 7 34
--------------+---------------+----------------
6 38 7 | 4 5 1 | 2 89 39
48 2 9 | 3 6 7 | 5 18 14
45 35 1 | 8 2 9 | 6 34 7
--------------+---------------+----------------
1 58 25 | 7 3 6 | 49 49 28
7 9 6 | 2 4 8 | 13 13 5
3 4 28 | 1 9 5 | 7 6 28
MadOverlord wrote:................If we apply a rule that: "you can only do a reduction that creates a conjugate pair in all groups it shares with any other n-possibility squares" ..................Now the question is: is this the rule, or just a lucky accident?
Note that the above grid would not be found by my proposed algorithm, since after dealing with R7C3, there is no n-possibility square that is a singleton in a row, column or block. It may be that this restriction is needed in order to ensure only a single reduction; if so, let's call them Unique BUGs.Jeff wrote:For grids with more unsolved poly-valued cells, multi-BUGs are possible. Consider the following example:
Starting grid:
- Code: Select all
2 7 3 | 6 8 4 | 19 5 19
9 1 4 | 5 7 3 | 8 2 6
58 6 58 | 9 1 2 | 34 7 34
--------------+---------------+----------------
6 38 7 | 4 5 1 | 2 389 389
48 2 9 | 3 6 7 | 5 148 148
45 35 1 | 8 2 9 | 6 34 7
--------------+---------------+----------------
1 58 258 | 7 3 6 | 49 489 2489
7 9 6 | 2 4 8 | 13 13 5
3 4 28 | 1 9 5 | 7 6 28
This grid can be reduced into 2 BUG grids:
2 7 3 | 6 8 4 | 19 5 19
9 1 4 | 5 7 3 | 8 2 6
58 6 58 | 9 1 2 | 34 7 34
--------------+---------------+----------------
6 38 7 | 4 5 1 | 2 3+89 8+39
48 2 9 | 3 6 7 | 5 8+14 4+18
45 35 1 | 8 2 9 | 6 34 7
--------------+---------------+----------------
1 58 8+25| 7 3 6 | 49 4+89 89+24
7 9 6 | 2 4 8 | 13 13 5
3 4 28 | 1 9 5 | 7 6 28
2 7 3 | 6 8 4 | 19 5 19
9 1 4 | 5 7 3 | 8 2 6
58 6 58 | 9 1 2 | 34 7 34
--------------+---------------+----------------
6 38 7 | 4 5 1 | 2 3+89 8+39
48 2 9 | 3 6 7 | 5 4+18 8+14
45 35 1 | 8 2 9 | 6 34 7
--------------+---------------+----------------
1 58 8+25| 7 3 6 | 49 8+49 49+28
7 9 6 | 2 4 8 | 13 13 5
3 4 28 | 1 9 5 | 7 6 28
+-------------+-------------+-------------+
| 2 7 3 | 6 8 4 | 19 5 19 |
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+-------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 148 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+-------------+
| 1 58 258 | 7 3 6 | 49 489 289 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+-------------+
+-------------+-------------+-------------+
| 2 7 3 | 6 8 4 | 19 5 19 |
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+-------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 148 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+-------------+
| 1 58 8+25| 7 3 6 | 49 489 289 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+-------------+
+-------------+-------------+---------------+
| 2 7 3 | 6 8 4 | 19 5 19 |
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 489 289 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
+-------------+-------------+---------------+ Call this
| 2 7 3 | 6 8 4 | 19 5 19 | R7A
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 8+49 9+28 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
+-------------+-------------+---------------+ And this
| 2 7 3 | 6 8 4 | 19 5 19 | R7B
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 9+48 8+29 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
+-------------+-------------+---------------+ R7A
| 2 7 3 | 6 8 4 | 19 5 19 |
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 8+39 3+89 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 8+49 9+28 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
+-------------+-------------+---------------+ R7A
| 2 7 3 | 6 8 4 | 19 5 19 |
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 3+89 8+39 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 8+49 9+28 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
+-------------+-------------+---------------+ R7B
| 2 7 3 | 6 8 4 | 19 5 19 |
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 8+39 3+89 | no 9 in col 7
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 9+48 8+29 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
Nick70 wrote:The only thing I can say is: of course.
+----------------+----------------+----------------+
| 7 49 6 | 5 1 3 | 48 489 2 |
| 14 1349 2 | 8 6 49 | 7 5 349 |
| 5 349 8 | 7 49 2 | 34 1 6 |
+----------------+----------------+----------------+
| 3 6 7 | 9 2 5 | 148 48 14 |
| 9 2 5 | 4 8 1 | 36 367 37 |
| 48 48 1 | 6 3 7 | 9 2 5 |
+----------------+----------------+----------------+
| 6 7 39 | 1 5 49 | 2 34 8 |
| 2 5 4 | 3 7 8 | 16 69 19 |
| 18 18 39 | 2 49 6 | 5 347 347 |
+----------------+----------------+----------------+
rubylips wrote:
- Code: Select all
2|8 2|9 1 | 4 5 6 | 7|9 7|8|9 3
5|6 5|9 4|6 | 3 7 8 | 2 1|4|9 1|4|9
7 3 4|8 | 1 9 2 | 5 4|8 6
--------------------+------------+-------------------
6|8 6|8 9 | 7 1 3 | 4 5 2
4 1 2 | 9 6 5 | 8 3 7
3|5 7 3|5 | 2 8 4 | 6 1|9 1|9
--------------------+------------+-------------------
1|2 4 6|8 | 6|8 3 9 | 1|7 2|7 5
1|2|3|5 2|5 3|5 | 6|8 4 7 | 1|9 2|6|9 8|9
9 6|8 7 | 5 2 1 | 3 4|6 4|8
Myth Jellies wrote:...the BUG grid leads to nothing useful that I could see.
PolySquare: R1C8=789
PolySquare: R2C8=149
PolySquare: R2C9=149
PolySquare: R8C1=1235
PolySquare: R8C8=269
Reduced R8C8 to 26:
+----------------+----------------+----------------+
| 28 29 1 | 4 5 6 | 79 789 3 |
| 56 59 46 | 3 7 8 | 2 149 149 |
| 7 3 48 | 1 9 2 | 5 48 6 |
+----------------+----------------+----------------+
| 68 68 9 | 7 1 3 | 4 5 2 |
| 4 1 2 | 9 6 5 | 8 3 7 |
| 35 7 35 | 2 8 4 | 6 19 19 |
+----------------+----------------+----------------+
| 12 4 68 | 68 3 9 | 17 27 5 |
| 1235 25 35 | 68 4 7 | 19 26 89 |
| 9 68 7 | 5 2 1 | 3 46 48 |
+----------------+----------------+----------------+
Reduced R8C1 to 13:
+-------------+-------------+-------------+
| 28 29 1 | 4 5 6 | 79 789 3 |
| 56 59 46 | 3 7 8 | 2 149 149 |
| 7 3 48 | 1 9 2 | 5 48 6 |
+-------------+-------------+-------------+
| 68 68 9 | 7 1 3 | 4 5 2 |
| 4 1 2 | 9 6 5 | 8 3 7 |
| 35 7 35 | 2 8 4 | 6 19 19 |
+-------------+-------------+-------------+
| 12 4 68 | 68 3 9 | 17 27 5 |
| 13 25 35 | 68 4 7 | 19 26 89 |
| 9 68 7 | 5 2 1 | 3 46 48 |
+-------------+-------------+-------------+
Reduced R2C9 to 14:
+-------------+-------------+-------------+
| 28 29 1 | 4 5 6 | 79 789 3 |
| 56 59 46 | 3 7 8 | 2 149 14 |
| 7 3 48 | 1 9 2 | 5 48 6 |
+-------------+-------------+-------------+
| 68 68 9 | 7 1 3 | 4 5 2 |
| 4 1 2 | 9 6 5 | 8 3 7 |
| 35 7 35 | 2 8 4 | 6 19 19 |
+-------------+-------------+-------------+
| 12 4 68 | 68 3 9 | 17 27 5 |
| 13 25 35 | 68 4 7 | 19 26 89 |
| 9 68 7 | 5 2 1 | 3 46 48 |
+-------------+-------------+-------------+
Reduced R2C8 to 19:
+-------------+-------------+-------------+
| 28 29 1 | 4 5 6 | 79 789 3 |
| 56 59 46 | 3 7 8 | 2 19 14 |
| 7 3 48 | 1 9 2 | 5 48 6 |
+-------------+-------------+-------------+
| 68 68 9 | 7 1 3 | 4 5 2 |
| 4 1 2 | 9 6 5 | 8 3 7 |
| 35 7 35 | 2 8 4 | 6 19 19 |
+-------------+-------------+-------------+
| 12 4 68 | 68 3 9 | 17 27 5 |
| 13 25 35 | 68 4 7 | 19 26 89 |
| 9 68 7 | 5 2 1 | 3 46 48 |
+-------------+-------------+-------------+
Reduced R1C8 to 78:
+----------+----------+----------+
| 28 29 1 | 4 5 6 | 79 78 3 |
| 56 59 46 | 3 7 8 | 2 19 14 |
| 7 3 48 | 1 9 2 | 5 48 6 |
+----------+----------+----------+
| 68 68 9 | 7 1 3 | 4 5 2 |
| 4 1 2 | 9 6 5 | 8 3 7 |
| 35 7 35 | 2 8 4 | 6 19 19 |
+----------+----------+----------+
| 12 4 68 | 68 3 9 | 17 27 5 |
| 13 25 35 | 68 4 7 | 19 26 89 |
| 9 68 7 | 5 2 1 | 3 46 48 |
+----------+----------+----------+
Bug constructed.
No reductions.
MadOverlord wrote:At this point, we have no singleton blocks, so we have to bifurcate the puzzle. In R7, we have 2 ways to go.
- Code: Select all
+-------------+-------------+---------------+ Call this
| 2 7 3 | 6 8 4 | 19 5 19 | R7A
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 8+49 9+28 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
and
- Code: Select all
+-------------+-------------+---------------+ And this
| 2 7 3 | 6 8 4 | 19 5 19 | R7B
| 9 1 4 | 5 7 3 | 8 2 6 |
| 58 6 58 | 9 1 2 | 34 7 34 |
+-------------+-------------+---------------+
| 6 38 7 | 4 5 1 | 2 389 389 |
| 48 2 9 | 3 6 7 | 5 18 8+14 |
| 45 35 1 | 8 2 9 | 6 34 7 |
+-------------+-------------+---------------+
| 1 58 8+25| 7 3 6 | 49 9+48 8+29 |
| 7 9 6 | 2 4 8 | 13 13 5 |
| 3 4 28 | 1 9 5 | 7 6 28 |
+-------------+-------------+---------------+
MadOverlord wrote:When a puzzle contains a BUG, and more than one square in the puzzle has more then 2 possibilities, then BUG possibilities can be removed from squares if, and only if, removing the possibility results in it appearing exactly twice in that square's row, twice in its column, and twice in its block.
When a puzzle contains a BUG, and more than one square in the puzzle has more then 2
possibilities, then BUG possibilities can be removed from squares if, and only if, removing the
possibility results in it appearing exactly twice in that square's row, twice in its column, and
twice in its block.
Nick70 wrote:Here is an application of the BUG principle with three quadrivalue cells:
- Code: Select all
7 2 69 | 5 3 69 | 8 1 4
89 4689 5 | 1 2 48 | 3 69 7
1 3 48 | 69 7 48 | 5 69 2
-------------------+--------------------+-------------------
6 1 2 | 8 4 5 | 9 7 3
5 47 47 | 3 9 1 | 6 2 8
3 89 89 | 7 6 2 | 1 4 5
-------------------+--------------------+-------------------
89 6789 6789 | 4 1 3 | 2 5 69
4 69 3 | 2 5 69 | 7 8 1
2 5 1 | 69 8 7 | 4 3 69
The BUG principle allows us to say that either r2c2=89 or r7c2=69 or r7c3=89. Putting those
together, we can say that r2c2=489, r7c2=679 and r7c3=789. The triple in box 1 then solves the
puzzle.
Myth Jellies wrote:Applying MadOverlord's rule to the puzzle above, the only reduction that I can see is the 8 in r7c2. Am I missing something?
1 36 2 | 58 38+5 9 | 7 4 56
4 36 9 | 7 35 2 | 68 58 1
8 7 5 | 6 1 4 | 2 9 3
--------------+---------------+---------------
9 45 17 | 58 67 36 | 48 13 2
3 45 78 | 2 9 1 | 46+8 58 67+5
6 2 18+7 | 4 78+5 35 | 9 13 57
--------------+---------------+---------------
7 1 6 | 3 4 8 | 5 2 9
5 9 4 | 1 2 7 | 3 6 8
2 8 3 | 9 56 56 | 1 7 4