JPF wrote:For each of those puzzles could you show the morphs with n=6 ?
Actually, no, because I appear to have made an error in the left-right check, which now gives values of 11, 13, 11, and 12, respectively. If there is no further error (it's all new code), then these four puzzles would have n > 9 for all five symmetries. In fact, I found more, all together eight:
- Code: Select all
...456.8..5.7...32.8.....46........5....12.....156....36....9..5.8.9..649......58
1.....78......91.278........7.5....4.6.......8..3....1..26.3..8.489.5........2465
...4.67.........3.6892.......863.1..7..8.1.24.16..2.7..6......7..4..89....1...4.3
.234.6.....718..3...93...5.2..6.89.......1....489..1..5.........3.....92.7..6.8..
.234.6.8..5.1....6.98............9.....91236..4.....7...47.5....6....8..7.2.9....
..34..7..4...8.2.6..8...1.523.............6...648.7..3.1.7....8...9......8.3..92.
..3..67.9...18..36.9......5.697......1........7452.9.35..8.3..1......4..9........
.23.5.......1892..86.3.....27....195.......2...4...3.7.......4....29..7.7.6....5.
Regards,
Mike
P.S. The puzzles come from Denis Berthier's
collection.