here daj95376 wrote:
- Code: Select all
....5...9.5.1...3.....37...2..6..8...6..1..7...4..5.....9.....2.3...1.6.8.....4.. ;136;elev;117;2BN D1D3
+--------------------------------------------------------------------------------+
| 13467 12478 123678 | 248 5 2468 | 1267 1248 9 |
| 4679 5 2678 | 1 24689 24689 | 267 3 4678 |
| 1469 12489 1268 | 2489 3 7 | 1256 12458 14568 |
|--------------------------+--------------------------+--------------------------|
| 2 179 1357 | 6 479 349 | 8 1459 1345 |
| 359 6 358 | 23489 1 23489 | 2359 7 345 |
| 1379 1789 4 | 23789 2789 5 | 12369 129 136 |
|--------------------------+--------------------------+--------------------------|
| 14567 147 9 | 34578 4678 3468 | 1357 158 2 |
| 457 3 257 | 245789 24789 1 | 579 6 578 |
| 8 127 12567 | 23579 2679 2369 | 4 159 1357 |
+--------------------------------------------------------------------------------+
# 179 eliminations remain
Templates: 56 59 16 50 32 20 87 26 28
<2489> accepted = 23 template combinations
...
47 eliminations
My utility program finds the same template counts and, without using uniqueness, finds 34 acceptable template combinations. After manually discarding the combinations with unavoidable set (48)r13c48, there remain the 18 below (where givens are not shown). What are your other 5 combinations?
18 acceptable <2489>-templates: Show
daj95376 wrote:r1c4,r2c1,r3c4,r4c6,r5c69,r6c8,r7c2,r8c35 locked for candidates <2489>
All ten of these are not in the same "class" and shouldn't be shown together like this IMO. The cells r1c4 and r3c4 are limited to candidates <2489> before the templates technique and are thus strong-inference-sets. The other eight cells are limited to candidates <2489> after discarding unacceptable template sets and are thus weak-inference-sets.
[edits: 1) add introductory note; 2) add line-formatted puzzle]