.
Thanks, Blue
I can't make direct comparisons with SudoRules, because the implementations are very different, but I see that the orders of magnitude are the same:
You say: "it checked 1,662,894 2-digit templates (in some number of {d1,d2} lists), and found nothing new"
and that's only for 2-digit templates (and maybe only part of them - not clear for me here).
Here's the SudoRules resolution path, upto depth 2:
- Code: Select all
Resolution state after Singles:
+-------------------------+-------------------------+-------------------------+
! 34568 4568 3568 ! 2458 2345689 25689 ! 3589 7 1 !
! 9 14578 13578 ! 14578 3458 1578 ! 358 6 2 !
! 34568 2 135678 ! 14578 345689 156789 ! 3589 34589 3459 !
+-------------------------+-------------------------+-------------------------+
! 2568 15689 4 ! 258 7 3 ! 15689 12589 569 !
! 2568 3 1256789 ! 258 2568 2568 ! 4 12589 5679 !
! 2568 5678 25678 ! 9 1 4 ! 35678 2358 3567 !
+-------------------------+-------------------------+-------------------------+
! 7 459 2359 ! 6 2459 1259 ! 1359 13459 8 !
! 4568 45689 5689 ! 3 4589 15789 ! 2 1459 45679 !
! 1 45689 235689 ! 24578 24589 25789 ! 35679 3459 345679 !
+-------------------------+-------------------------+-------------------------+
278 candidates, 0 csp-links and 0 links. Density = 0.0%
Starting non trivial part of solution.
entering level T1 with <Fact-3764>
candidate in no template[1] for digit 2 ==> r6c3≠2
candidate in no template[1] for digit 6 ==> r5c9≠6
candidate in no template[1] for digit 6 ==> r5c3≠6
candidate in no template[1] for digit 2 ==> r5c3≠2
candidate in no template[1] for digit 6 ==> r5c1≠6
candidate in no template[1] for digit 1 ==> r3c6≠1
candidate in no template[1] for digit 4 ==> r3c5≠4
candidate in no template[1] for digit 4 ==> r3c4≠4
candidate in no template[1] for digit 3 ==> r3c3≠3
candidate in no template[1] for digit 4 ==> r3c1≠4
candidate in no template[1] for digit 7 ==> r2c6≠7 *
candidate in no template[1] for digit 1 ==> r2c6≠1
candidate in no template[1] for digit 3 ==> r2c3≠3
candidate in no template[1] for digit 3 ==> r1c3≠3
entering level T2 with <Fact-8673>
candidate in no template[1] for digit 1 ==> r4c8≠1
candidate in no template[1] for digit 1 ==> r7c8≠1
candidate in no template[1] for digit 7 ==> r2c3≠7
candidate in no template[1] for digit 7 ==> r6c3≠7
candidate in no template[1] for digit 7 ==> r6c9≠7
candidate in no template[1] for digit 7 ==> r9c9≠7
entering level T3 with <Fact-1428445>
(*) is the only elimination in T1 that is not equivalent to a whip[1]
The difference <Fact-1428445> - <Fact-3764> i.e.
1,424,681 is the number of templates[2] that have to be considered once the full power of T1 has been exhausted.
Note that one has to consider all these templates[2] in order to make sure no elimination (of candidates and templates[1]) allowed in T2 is missed, before activating any rules in T3.
This number alone (close to yours, and not enough to solve the puzzle) shows the total absurdity of a template solution for this puzzle.
Note that the (partial) solution I've given here hides in fact most of the elimination steps (it hides all the eliminations of templates[1]).
In order to see them, you can set global variable ?*print-templates* to TRUE in SudoRules. You will be submerged with them, but that'll give you the real number of steps involved.
.