Tatoone Escape Pod

Post puzzles for others to solve here.

Tatoone Escape Pod

Postby mith » Tue Jan 05, 2021 4:17 pm

Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . . 9 | 8 . . | . . 7 |
| . 7 . | . 6 . | . 5 . |
+-------+-------+-------+
| . 4 . | . 3 . | . 6 . |
| . . 8 | 2 . . | . . 9 |
| . . . | . . . | 2 . . |
+-------+-------+-------+
| . . 7 | 9 . . | . . 8 |
| . 5 . | . 4 . | . 3 . |
| 4 . . | . . 2 | 5 . . |
+-------+-------+-------+
...........98....7.7..6..5..4..3..6...82....9......2....79....8.5..4..3.4....25..
mith
 
Posts: 996
Joined: 14 July 2020

Re: Tatoone Escape Pod

Postby pjb » Tue Jan 05, 2021 10:14 pm

Eight swordfishes and a jellyfish (not showing basics) :

Swordfish of 2s (r348\c139) => -2 r1c139, r27c1
Swordfish of 4s (r257\c678) => -4 r1c678, r3c67, r6c68
Swordfish of 5s (r257\c156) => -5 r1c156, r4c16, r6c156
Swordfish of 8s (r348\c167) => -8 r1c17, r6c6
Swordfish of 9s (r348\c167) => -9 r1c67, r6c16
Swordfish of 7s (r148\c467) => -7 r5c67, r6c46, r9c4
Finned swordfish of 1s (r349\c349), fin at r3c6 => -1 r1c4
Jellyfish of 1s (r3489\c3469) => -1 r1c369, r2c6, r5c6, r6c3469, r7c6
Swordfish of 3s (r369\c349) => -3 from r1c349 =>

Code: Select all
 13      28      456    | 45     29     7      | 13     89     46     
 1356    136     9      | 8      125    345    | 1346   124    7     
 28      7       134    | 13     6      19     | 89     5      1234   
------------------------+----------------------+---------------------
 29      4       125    | 17     3      89     | 78     6      15     
 13567   136     8      | 2      17     45     | 134    147    9     
 17      19      35     | 45     89     6      | 2      178    345   
------------------------+----------------------+---------------------
 136     1236    7      | 9      15     35     | 146    124    8     
 89      5       126    | 167    4      18     | 79     3      126   
 4       89      136    | 136    78     2      | 5      79     16     

Then 2 simple chains
(1=9)r3c6 - (9=8)r3c7 - (8=7)r4c7 - (7=1)r4c4 => -1 r3c4
(basics)
(1=2)r2c5 - (2=9)r1c5 - (9=8)r1c8 - (8=1)r6c8 => -1 r2c8; stte

Phil
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia


Return to Puzzles