Eight swordfishes and a jellyfish (not showing basics) :
Swordfish of 2s (r348\c139) => -2 r1c139, r27c1
Swordfish of 4s (r257\c678) => -4 r1c678, r3c67, r6c68
Swordfish of 5s (r257\c156) => -5 r1c156, r4c16, r6c156
Swordfish of 8s (r348\c167) => -8 r1c17, r6c6
Swordfish of 9s (r348\c167) => -9 r1c67, r6c16
Swordfish of 7s (r148\c467) => -7 r5c67, r6c46, r9c4
Finned swordfish of 1s (r349\c349), fin at r3c6 => -1 r1c4
Jellyfish of 1s (r3489\c3469) => -1 r1c369, r2c6, r5c6, r6c3469, r7c6
Swordfish of 3s (r369\c349) => -3 from r1c349 =>
- Code: Select all
13 28 456 | 45 29 7 | 13 89 46
1356 136 9 | 8 125 345 | 1346 124 7
28 7 134 | 13 6 19 | 89 5 1234
------------------------+----------------------+---------------------
29 4 125 | 17 3 89 | 78 6 15
13567 136 8 | 2 17 45 | 134 147 9
17 19 35 | 45 89 6 | 2 178 345
------------------------+----------------------+---------------------
136 1236 7 | 9 15 35 | 146 124 8
89 5 126 | 167 4 18 | 79 3 126
4 89 136 | 136 78 2 | 5 79 16
Then 2 simple chains
(1=9)r3c6 - (9=8)r3c7 - (8=7)r4c7 - (7=1)r4c4 => -1 r3c4
(basics)
(1=2)r2c5 - (2=9)r1c5 - (9=8)r1c8 - (8=1)r6c8 => -1 r2c8; stte
Phil