It seems I found a different Jellyfish with the same eliminations
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------------+-------------------------+-------------------------+
! 235689 23589 256789 ! 34679 1378 134679 ! 1245789 12589 24579 !
! 5689 589 1 ! 2 78 4679 ! 45789 589 3 !
! 2389 4 2789 ! 379 5 1379 ! 12789 6 279 !
+-------------------------+-------------------------+-------------------------+
! 12589 7 2589 ! 359 6 12359 ! 2589 4 259 !
! 24569 259 3 ! 8 27 24579 ! 25679 259 1 !
! 1245689 12589 25689 ! 4579 127 124579 ! 3 2589 25679 !
+-------------------------+-------------------------+-------------------------+
! 2359 2359 4 ! 1 237 23567 ! 2569 2359 8 !
! 123589 6 2589 ! 35 4 2358 ! 1259 7 259 !
! 7 12358 258 ! 356 9 23568 ! 12456 1235 2456 !
+-------------------------+-------------------------+-------------------------+
Trying first to find as many Subsets as possible:
hidden-pairs-in-a-block: b6{n6 n7}{r5c7 r6c9} ==> r6c9 ≠ 9, r6c9 ≠ 5, r6c9 ≠ 2, r5c7 ≠ 9, r5c7 ≠ 5, r5c7 ≠ 2
finned-x-wing-in-columns: n3{c5 c2}{r1 r7} ==> r7c1 ≠ 3
swordfish-in-columns: n3{c2 c5 c8}{r9 r1 r7} ==> r9c6 ≠ 3, r9c4 ≠ 3, r7c6 ≠ 3, r1c6 ≠ 3, r1c4 ≠ 3, r1c1 ≠ 3
swordfish-in-columns: n1{c2 c5 c8}{r9 r6 r1} ==> r9c7 ≠ 1, r6c6 ≠ 1, r6c1 ≠ 1, r1c7 ≠ 1, r1c6 ≠ 1
hidden-pairs-in-a-row: r9{n1 n3}{c2 c8} ==> r9c8 ≠ 5, r9c8 ≠ 2, r9c2 ≠ 8, r9c2 ≠ 5, r9c2 ≠ 2
swordfish-in-columns: n8{c2 c5 c8}{r6 r1 r2} ==> r6c3 ≠ 8, r6c1 ≠ 8, r2c7 ≠ 8, r2c1 ≠ 8, r1c7 ≠ 8, r1c3 ≠ 8, r1c1 ≠ 8
hidden-triplets-in-a-column: c1{n1 n3 n8}{r4 r8 r3} ==> r8c1 ≠ 9, r8c1 ≠ 5, r8c1 ≠ 2, r4c1 ≠ 9, r4c1 ≠ 5, r4c1 ≠ 2, r3c1 ≠ 9, r3c1 ≠ 2
hidden-triplets-in-a-row: r1{n1 n3 n8}{c8 c5 c2} ==> r1c8 ≠ 9, r1c8 ≠ 5, r1c8 ≠ 2, r1c5 ≠ 7, r1c2 ≠ 9, r1c2 ≠ 5, r1c2 ≠ 2
naked-pairs-in-a-block: b1{r1c2 r3c1}{n3 n8} ==> r3c3 ≠ 8, r2c2 ≠ 8
swordfish-in-columns: n2{c2 c5 c8}{r5 r6 r7} ==> r7c7 ≠ 2, r7c6 ≠ 2, r7c1 ≠ 2, r6c6 ≠ 2, r6c3 ≠ 2, r6c1 ≠ 2, r5c6 ≠ 2, r5c1 ≠ 2
hidden-single-in-a-column ==> r1c1 = 2
hidden-triplets-in-a-row: r6{n1 n2 n8}{c2 c5 c8} ==> r6c8 ≠ 9, r6c8 ≠ 5, r6c5 ≠ 7, r6c2 ≠ 9, r6c2 ≠ 5
swordfish-in-columns: n6{c3 c4 c9}{r6 r1 r9} ==> r9c7 ≠ 6, r9c6 ≠ 6, r6c1 ≠ 6, r1c6 ≠ 6
swordfish-in-columns: n7{c3 c4 c9}{r3 r1 r6} ==> r6c6 ≠ 7, r3c7 ≠ 7, r3c6 ≠ 7, r1c7 ≠ 7, r1c6 ≠ 7
hidden-quads-in-a-column: c6{n1 n2 n8 n3}{r3 r4 r9 r8} ==> r9c6 ≠ 5, r8c6 ≠ 5, r4c6 ≠ 9, r4c6 ≠ 5, r3c6 ≠ 9
jellyfish-in-columns: n5{c1 c6 c2 c8}{r7 r6 r5 r2} ==> r7c7 ≠ 5, r6c4 ≠ 5, r6c3 ≠ 5, r2c7 ≠ 5- Code: Select all
Resolution state:
2 38 5679 4679 138 49 459 18 4579
569 59 1 2 78 4679 479 589 3
38 4 79 379 5 13 1289 6 279
18 7 2589 359 6 123 2589 4 259
4569 259 3 8 27 4579 67 259 1
459 128 69 479 12 459 3 28 67
59 2359 4 1 237 567 69 2359 8
138 6 2589 35 4 238 1259 7 259
7 13 258 56 9 28 245 13 2456
Now a few bivalue-chains will finish the puzzle:
biv-chain[3]: r1c2{n3 n8} - r1c8{n8 n1} - r9n1{c8 c2} ==> r9c2 ≠ 3
singles ==> r9c2 = 1, r9c8 = 3, r4c1 = 1, r6c5 = 1, r3c6 = 1, r1c8 = 1, r8c7 = 1
biv-chain[3]: r6c8{n2 n8} - b3n8{r2c8 r3c7} - b3n2{r3c7 r3c9} ==> r4c9 ≠ 2
biv-chain[3]: r3c3{n7 n9} - r6c3{n9 n6} - r6c9{n6 n7} ==> r3c9 ≠ 7
naked-triplets-in-a-column: c9{r3 r4 r8}{n2 n9 n5} ==> r9c9 ≠ 5, r9c9 ≠ 2, r1c9 ≠ 9, r1c9 ≠ 5
biv-chain[3]: c4n4{r6 r1} - r1c9{n4 n7} - r6n7{c9 c4} ==> r6c4 ≠ 9
biv-chain[3]: r1c9{n4 n7} - r6n7{c9 c4} - c4n4{r6 r1} ==> r1c7 ≠ 4, r1c6 ≠ 4
stte