Tatooine Moisture Farm

Post puzzles for others to solve here.

Tatooine Moisture Farm

Postby mith » Tue Apr 13, 2021 9:22 pm

Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . . 9 | 8 . . | . . 7 |
| . 6 . | . 5 . | . 4 . |
+-------+-------+-------+
| . 5 . | . 3 . | . 6 . |
| . . 7 | 9 . . | . . 8 |
| . . . | . . 4 | . . . |
+-------+-------+-------+
| . . . | . . . | . . . |
| . . 8 | 2 . . | . . 9 |
| . 4 2 | . 6 . | . 5 . |
+-------+-------+-------+
...........98....7.6..5..4..5..3..6...79....8.....4..............82....9.42.6..5.
mith
 
Posts: 996
Joined: 14 July 2020

Re: Tatooine Moisture Farm

Postby pjb » Tue Apr 13, 2021 11:41 pm

There are 11 consecutive fish, but slightly shorter with 5 MSLSs and 4 fish: (basic moves in between not included)

2-3 MSLS at r34c349; Links: 13r3 14r4 7c4 2c9; Eliminations: -1 r3c1, -3 r3c1, -1 r4c1, -4 r4c1, -2 r1c9, -1 r3c6, -3 r3c6, -1 r4c6, -2 r6c9, -1 r3c7, -3 r3c7, -1 r4c7, -4 r4c7, -2 r7c9, -7 r9c4

3-3 MSLS at r258c258; Links: 2r2 2r5 7r8 13c2 14c5 13c8; Eliminations: -2 r2c1, -7 r8c1, -1 r1c2, -3 r1c2, -1 r1c5, -4 r1c5, -1 r1c8, -3 r1c8, -2 r2c6, -7 r8c6, -1 r6c2, -3 r6c2, -1 r6c5, -1 r6c8, -3 r6c8, -2 r2c7, -7 r8c7, -1 r7c2, -3 r7c2, -1 r7c5, -4 r7c5, -1 r7c8, -3 r7c8

3-3 MSLS at r258c258; Links: 12r2 12r5 17r8 3c2 4c5 3c8; Eliminations: -1 r2c1, -1 r8c1, -1 r2c6, -1 r8c6, -1 r2c7, -1 r8c7

3-3 MSLS at r349c349; Links: 3r3 4r4 3r9 1c3 17c4 12c9; Eliminations: -1 r1c3, -1 r1c9, -1 r6c3, -1 r6c9, -1 r7c3, -1 r7c9

3-3 MSLS at r146 c239 +r1c4 r6c4 r7c2 r3c3 r3c9 r9c9; Links: 456r1, 4r4, 56r6, 789c2, 13c3, 123c9; Eliminations: r1c1<>4, r1c1<>5, r1c7<>5, r1c7<>6, r7c3<>3, r7c9<>3

Swordfish of 8s (r349\c167) => -8 r1c1, r1c7, r6c1, r7c6, r7c7

Swordfish of 9s (r349\c167) => -9 r1c67, r6c17, r7c6

Sashimi franken swordfish of 7s (r389\c15b9), fins at r3c46 => -7 r1c5

Finned franken swordfish of 3s (r9b62\c489), fin at r2c6 => -3 r2c8

(1=4)r4c3 - (4=6)r5c1 - (6=5)r5c6 - (5=3)r8c6 - (3=1)r9c4 => -1 r4c4; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Tatooine Moisture Farm

Postby Leren » Tue Apr 13, 2021 11:59 pm

I used 1 X Wing, 8 Swordfish, 1 ER and 1 W Wing.

Interestingly the Basic-anti-backdoors list was a big one with 19 possibilities : 5 r1c3, 4 r1c4, 6 r1c9, 4 r2c1, 6 r2c6, 5 r2c7, 1 r3c3, 4 r4c3, 6 r5c1, 5 r5c6, 4 r5c7, 6 r6c4, 5 r6c9, 6 r7c3, 5 r7c4, 4 r7c9, 5 r8c1, 4 r8c5 & 6 r8c7

That many usually indicates an easy OTP solution but mith has tricked us this time :D

Leren
Last edited by Leren on Wed Apr 14, 2021 8:58 am, edited 3 times in total.
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Tatooine Moisture Farm

Postby mith » Wed Apr 14, 2021 1:59 am

Bwahaha

(I'm not aware of an easy one-step solution, no. There are some nasty ones, and maybe someone will find something better than those.)
mith
 
Posts: 996
Joined: 14 July 2020

Re: Tatooine Moisture Farm

Postby denis_berthier » Wed Apr 14, 2021 2:47 am

.
Resolution state after Singles:
Code: Select all
   +-------------------------+-------------------------+-------------------------+
   ! 1234578 12378   1345    ! 13467   12479   123679  ! 1235689 12389   12356   !
   ! 12345   123     9       ! 8       124     1236    ! 12356   123     7       !
   ! 12378   6       13      ! 137     5       12379   ! 12389   4       123     !
   +-------------------------+-------------------------+-------------------------+
   ! 12489   5       14      ! 17      3       1278    ! 12479   6       124     !
   ! 12346   123     7       ! 9       12      1256    ! 12345   123     8       !
   ! 123689  12389   136     ! 1567    1278    4       ! 123579  12379   1235    !
   +-------------------------+-------------------------+-------------------------+
   ! 135679  1379    1356    ! 13457   14789   135789  ! 1234678 12378   12346   !
   ! 13567   137     8       ! 2       147     1357    ! 13467   137     9       !
   ! 1379    4       2       ! 137     6       13789   ! 1378    5       13      !
   +-------------------------+-------------------------+-------------------------+
263 candidates, 2099 csp-links and 2099 links. Density = 6.09%


First trying to find as many Subsets as possible (25 found, including 10 fish):
hidden-pairs-in-a-block: b5{n5 n6}{r5c6 r6c4} ==> r6c4 ≠ 7, r6c4 ≠ 1, r5c6 ≠ 2, r5c6 ≠ 1
naked-triplets-in-a-row: r5{c2 c5 c8}{n3 n2 n1} ==> r5c7 ≠ 3, r5c7 ≠ 2, r5c7 ≠ 1, r5c1 ≠ 3, r5c1 ≠ 2, r5c1 ≠ 1
naked-triplets-in-a-column: c4{r3 r4 r9}{n3 n7 n1} ==> r7c4 ≠ 7, r7c4 ≠ 3, r7c4 ≠ 1, r1c4 ≠ 7, r1c4 ≠ 3, r1c4 ≠ 1
swordfish-in-columns: n6{c3 c4 c9}{r7 r6 r1} ==> r7c7 ≠ 6, r7c1 ≠ 6, r6c1 ≠ 6, r1c7 ≠ 6, r1c6 ≠ 6
swordfish-in-columns: n9{c2 c5 c8}{r6 r7 r1} ==> r7c6 ≠ 9, r7c1 ≠ 9, r6c7 ≠ 9, r6c1 ≠ 9, r1c7 ≠ 9, r1c6 ≠ 9
swordfish-in-columns: n4{c3 c4 c9}{r4 r1 r7} ==> r7c7 ≠ 4, r7c5 ≠ 4, r4c7 ≠ 4, r4c1 ≠ 4, r1c5 ≠ 4, r1c1 ≠ 4
hidden-pairs-in-a-block: b9{n4 n6}{r7c9 r8c7} ==> r8c7 ≠ 7, r8c7 ≠ 3, r8c7 ≠ 1, r7c9 ≠ 3, r7c9 ≠ 2, r7c9 ≠ 1
swordfish-in-rows: n8{r3 r4 r9}{c7 c1 c6} ==> r7c7 ≠ 8, r7c6 ≠ 8, r6c1 ≠ 8, r1c7 ≠ 8, r1c1 ≠ 8
hidden-pairs-in-a-block: b3{n8 n9}{r1c8 r3c7} ==> r3c7 ≠ 3, r3c7 ≠ 2, r3c7 ≠ 1, r1c8 ≠ 3, r1c8 ≠ 2, r1c8 ≠ 1
hidden-pairs-in-a-block: b4{n8 n9}{r4c1 r6c2} ==> r6c2 ≠ 3, r6c2 ≠ 2, r6c2 ≠ 1, r4c1 ≠ 2, r4c1 ≠ 1
hidden-pairs-in-a-block: b8{n8 n9}{r7c5 r9c6} ==> r9c6 ≠ 7, r9c6 ≠ 3, r9c6 ≠ 1, r7c5 ≠ 7, r7c5 ≠ 1
swordfish-in-rows: n5{r2 r5 r8}{c1 c7 c6} ==> r7c6 ≠ 5, r7c1 ≠ 5, r6c7 ≠ 5, r1c7 ≠ 5, r1c1 ≠ 5
hidden-pairs-in-a-block: b1{n4 n5}{r1c3 r2c1} ==> r2c1 ≠ 3, r2c1 ≠ 2, r2c1 ≠ 1, r1c3 ≠ 3, r1c3 ≠ 1
hidden-pairs-in-a-block: b3{n5 n6}{r1c9 r2c7} ==> r2c7 ≠ 3, r2c7 ≠ 2, r2c7 ≠ 1, r1c9 ≠ 3, r1c9 ≠ 2, r1c9 ≠ 1
hidden-pairs-in-a-block: b7{n5 n6}{r7c3 r8c1} ==> r8c1 ≠ 7, r8c1 ≠ 3, r8c1 ≠ 1, r7c3 ≠ 3, r7c3 ≠ 1
swordfish-in-columns: n3{c3 c4 c9}{r6 r3 r9} ==> r9c7 ≠ 3, r9c1 ≠ 3, r6c8 ≠ 3, r6c7 ≠ 3, r6c1 ≠ 3, r3c6 ≠ 3, r3c1 ≠ 3
x-wing-in-columns: n3{c1 c7}{r1 r7} ==> r7c8 ≠ 3, r7c6 ≠ 3, r7c2 ≠ 3, r1c6 ≠ 3, r1c2 ≠ 3
hidden-triplets-in-a-column: c6{n3 n5 n6}{r2 r8 r5} ==> r8c6 ≠ 7, r8c6 ≠ 1, r2c6 ≠ 2, r2c6 ≠ 1
hidden-triplets-in-a-row: r6{n3 n5 n6}{c3 c9 c4} ==> r6c9 ≠ 2, r6c9 ≠ 1, r6c3 ≠ 1
swordfish-in-columns: n1{c3 c4 c9}{r4 r3 r9} ==> r9c7 ≠ 1, r9c1 ≠ 1, r4c7 ≠ 1, r4c6 ≠ 1, r3c6 ≠ 1, r3c1 ≠ 1
hidden-pairs-in-a-row: r9{n1 n3}{c4 c9} ==> r9c4 ≠ 7
swordfish-in-columns: n1{c1 c6 c7}{r6 r7 r1} ==> r7c8 ≠ 1, r7c2 ≠ 1, r6c8 ≠ 1, r6c5 ≠ 1, r1c5 ≠ 1, r1c2 ≠ 1
naked-pairs-in-a-block: b7{r7c2 r9c1}{n7 n9} ==> r8c2 ≠ 7, r7c1 ≠ 7
naked-triplets-in-a-column: c2{r2 r5 r8}{n1 n2 n3} ==> r1c2 ≠ 2
finned-jellyfish-in-rows: n7{r9 r6 r8 r3}{c1 c7 c8 c5} ==> r1c5 ≠ 7
PUZZLE 0 IS NOT SOLVED. 61 VALUES MISSING.
Code: Select all
CURRENT RESOLUTION STATE:
   1237      78        45        46        29        127       123       89        56
   45        123       9         8         124       36        56        123       7
   278       6         13        137       5         279       89        4         123
   89        5         14        17        3         278       279       6         124
   46        123       7         9         12        56        45        123       8
   12        89        36        56        278       4         127       279       35
   13        79        56        45        89        17        1237      278       46
   56        13        8         2         147       35        46        137       9
   79        4         2         13        6         89        78        5         13


From this point on, there are many possibilities:
- either with the standard simplest-first strategy, requiring no more than Subsets[3] and bivalue-chains[3]:
Code: Select all
biv-chain[3]: r3c3{n1 n3} - c4n3{r3 r9} - r9n1{c4 c9} ==> r3c9 ≠ 1
biv-chain[3]: r3c9{n2 n3} - c7n3{r1 r7} - b9n2{r7c7 r7c8} ==> r2c8 ≠ 2
biv-chain[2]: r2n2{c5 c2} - b4n2{r5c2 r6c1} ==> r6c5 ≠ 2
biv-chain[3]: r2c8{n1 n3} - r1n3{c7 c1} - r3c3{n3 n1} ==> r2c2 ≠ 1
biv-chain[3]: r2c2{n2 n3} - r1n3{c1 c7} - b3n2{r1c7 r3c9} ==> r3c1 ≠ 2
naked-pairs-in-a-block: b1{r1c2 r3c1}{n7 n8} ==> r1c1 ≠ 7
biv-chain[3]: c4n7{r4 r3} - r3c1{n7 n8} - r4n8{c1 c6} ==> r4c6 ≠ 7
biv-chain[3]: r4c6{n2 n8} - r6c5{n8 n7} - r4n7{c4 c7} ==> r4c7 ≠ 2
x-wing-in-rows: n2{r3 r4}{c6 c9} ==> r1c6 ≠ 2
naked-pairs-in-a-column: c6{r1 r7}{n1 n7} ==> r3c6 ≠ 7
naked-pairs-in-a-block: b2{r1c5 r3c6}{n2 n9} ==> r2c5 ≠ 2
stte


- or with a single step. There are many possibilities.
There are 18 W1-anti-backdoors: n6r8c7 n4r8c5 n5r8c1 n4r7c9 n5r7c4 n6r7c3 n5r6c9 n6r6c4 n4r5c7 n5r5c6 n6r5c1 n4r4c3 n5r2c7 n6r2c6 n4r2c1 n6r1c9 n4r1c4 n5r1c3, all of which give rise to a single-step solution (after the initial Subsets).
Here are the simplest solutions:
1) Using a bivalue-chain [5]
Code: Select all
biv-chain[5]: r2n6{c7 c6} - b2n3{r2c6 r3c4} - c4n7{r3 r4} - c5n7{r6 r8} - r8n4{c5 c7} ==> r8c7 ≠ 6
stte

Code: Select all
biv-chain[5]: r8c6{n5 n3} - b2n3{r2c6 r3c4} - c4n7{r3 r4} - c5n7{r6 r8} - b8n4{r8c5 r7c4} ==> r7c4 ≠ 5
stte

Code: Select all
biv-chain[5]: c5n4{r2 r8} - c5n7{r8 r6} - c4n7{r4 r3} - b2n3{r3c4 r2c6} - b2n6{r2c6 r1c4} ==> r1c4 ≠ 4
stte

2) Using a z-chain[4]:
Code: Select all
z-chain[4]: b8n7{r8c5 r7c6} - b8n1{r7c6 r9c4} - r4c4{n1 n7} - c5n7{r6 .} ==> r8c5 ≠ 4
stte
Last edited by denis_berthier on Wed Apr 14, 2021 5:19 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Tatooine Moisture Farm

Postby denis_berthier » Wed Apr 14, 2021 2:54 am

mith wrote:(I'm not aware of an easy one-step solution, no. There are some nasty ones, and maybe someone will find something better than those.)

If you want a dirty one starting with the original puzzle, forcing-T&E(S) (or, for that matter, conjugated tracks) will provide it:
FORCING-T&E(S) applied to bivalue candidates n2r7c7 and n2r7c8 :
===> 8 values decided in both cases: n1r6c7 n2r6c1 n2r2c2 n1r2c8 n3r2c6 n1r9c9 n3r9c4 n4r2c5
===> 36 candidates eliminated in both cases: n2r1c1 n7r1c1 n4r1c4 n7r1c5 n2r1c6 n1r1c7 n4r2c1 n1r2c2 n3r2c2 n1r2c5 n2r2c5 n6r2c6 n2r2c8 n3r2c8 n2r3c1 n3r3c4 n7r3c6 n1r3c9 n7r4c6 n2r4c7 n1r4c9 n2r5c2 n1r5c8 n1r6c1 n2r6c5 n2r6c7 n7r6c7 n2r6c8 n1r7c7 n7r7c7 n7r7c8 n4r8c5 n3r8c6 n1r8c8 n1r9c4 n3r9c9
Code: Select all
CURRENT RESOLUTION STATE:
   13        78        45        6         29        17        23        89        56       
   5         2         9         8         4         3         56        1         7         
   78        6         13        17        5         29        89        4         23       
   89        5         14        17        3         28        79        6         24       
   46        13        7         9         12        56        45        23        8         
   2         89        36        56        78        4         1         79        35       
   13        79        56        45        89        17        23        28        46       
   56        13        8         2         17        5         46        37        9         
   79        4         2         3         6         89        78        5         1

stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Tatooine Moisture Farm

Postby denis_berthier » Wed Apr 14, 2021 5:37 am

.
On second thoughts, considering the large number of Subsets, I wondered if there would be a simple whips solution using no Subset. (Rare types of Subset eliminations cannot be obtained by whips.)

There are indeed much simpler solutions than I thought, starting with the same bivalue-chains[≤3]

start: Show
biv-chain[2]: b5n5{r5c6 r6c4} - b5n6{r6c4 r5c6} ==> r5c6 ≠ 1, r5c6 ≠ 2
biv-chain[2]: b5n5{r6c4 r5c6} - b5n6{r5c6 r6c4} ==> r6c4 ≠ 1, r6c4 ≠ 7
biv-chain[3]: r2n4{c1 c5} - r8n4{c5 c7} - r5n4{c7 c1} ==> r1c1 ≠ 4, r4c1 ≠ 4
biv-chain[3]: c9n4{r7 r4} - b4n4{r4c3 r5c1} - r2n4{c1 c5} ==> r7c5 ≠ 4
biv-chain[3]: b8n4{r7c4 r8c5} - r2n4{c5 c1} - r5n4{c1 c7} ==> r7c7 ≠ 4
biv-chain[3]: b9n4{r8c7 r7c9} - c4n4{r7 r1} - c3n4{r1 r4} ==> r4c7 ≠ 4
biv-chain[3]: c3n4{r1 r4} - b6n4{r4c9 r5c7} - r8n4{c7 c5} ==> r1c5 ≠ 4
biv-chain[3]: r1n4{c4 c3} - r4c3{n4 n1} - r4c4{n1 n7} ==> r1c4 ≠ 7
biv-chain[3]: c1n4{r2 r5} - r4c3{n4 n1} - r3c3{n1 n3} ==> r2c1 ≠ 3
biv-chain[3]: r2n5{c1 c7} - r5n5{c7 c6} - r8n5{c6 c1} ==> r1c1 ≠ 5, r7c1 ≠ 5
biv-chain[2]: b1n5{r2c1 r1c3} - b1n4{r1c3 r2c1} ==> r2c1 ≠ 1, r2c1 ≠ 2
biv-chain[2]: b1n4{r1c3 r2c1} - b1n5{r2c1 r1c3} ==> r1c3 ≠ 1, r1c3 ≠ 3
biv-chain[3]: c4n5{r6 r7} - b7n5{r7c3 r8c1} - r2n5{c1 c7} ==> r6c7 ≠ 5
biv-chain[3]: b6n5{r5c7 r6c9} - c4n5{r6 r7} - c3n5{r7 r1} ==> r1c7 ≠ 5
biv-chain[3]: r2n6{c6 c7} - c7n5{r2 r5} - r5c6{n5 n6} ==> r1c6 ≠ 6
biv-chain[3]: c9n6{r7 r1} - b2n6{r1c4 r2c6} - r5n6{c6 c1} ==> r7c1 ≠ 6
biv-chain[2]: b7n6{r8c1 r7c3} - b7n5{r7c3 r8c1} ==> r8c1 ≠ 1, r8c1 ≠ 3, r8c1 ≠ 7
biv-chain[2]: b7n5{r7c3 r8c1} - b7n6{r8c1 r7c3} ==> r7c3 ≠ 1, r7c3 ≠ 3
biv-chain[3]: b7n6{r7c3 r8c1} - r5n6{c1 c6} - r2n6{c6 c7} ==> r7c7 ≠ 6
biv-chain[2]: b9n6{r8c7 r7c9} - b9n4{r7c9 r8c7} ==> r8c7 ≠ 1, r8c7 ≠ 3, r8c7 ≠ 7
biv-chain[2]: b9n4{r7c9 r8c7} - b9n6{r8c7 r7c9} ==> r7c9 ≠ 1, r7c9 ≠ 2, r7c9 ≠ 3
biv-chain[3]: b9n6{r8c7 r7c9} - c3n6{r7 r6} - c4n6{r6 r1} ==> r1c7 ≠ 6
biv-chain[2]: b3n6{r2c7 r1c9} - b3n5{r1c9 r2c7} ==> r2c7 ≠ 1, r2c7 ≠ 2, r2c7 ≠ 3
biv-chain[2]: b3n5{r1c9 r2c7} - b3n6{r2c7 r1c9} ==> r1c9 ≠ 1, r1c9 ≠ 2, r1c9 ≠ 3
biv-chain[3]: c7n5{r5 r2} - c7n6{r2 r8} - c7n4{r8 r5} ==> r5c7 ≠ 1, r5c7 ≠ 2, r5c7 ≠ 3
biv-chain[3]: c4n6{r6 r1} - b3n6{r1c9 r2c7} - r8n6{c7 c1} ==> r6c1 ≠ 6
biv-chain[3]: r7c3{n5 n6} - r6n6{c3 c4} - b5n5{r6c4 r5c6} ==> r7c6 ≠ 5
biv-chain[3]: r7n5{c4 c3} - r1c3{n5 n4} - c4n4{r1 r7} ==> r7c4 ≠ 1, r7c4 ≠ 3, r7c4 ≠ 7
biv-chain[3]: c1n6{r5 r8} - r8c7{n6 n4} - r5n4{c7 c1} ==> r5c1 ≠ 1, r5c1 ≠ 2, r5c1 ≠ 3
biv-chain[3]: r1n6{c4 c9} - r7c9{n6 n4} - c4n4{r7 r1} ==> r1c4 ≠ 1, r1c4 ≠ 3
biv-chain[3]: r3c3{n1 n3} - c4n3{r3 r9} - r9c9{n3 n1} ==> r3c9 ≠ 1
biv-chain[3]: r3n8{c1 c7} - r9n8{c7 c6} - b5n8{r4c6 r6c5} ==> r6c1 ≠ 8
biv-chain[3]: r3n8{c7 c1} - b4n8{r4c1 r6c2} - c5n8{r6 r7} ==> r7c7 ≠ 8
biv-chain[3]: b9n8{r7c8 r9c7} - r3n8{c7 c1} - r4n8{c1 c6} ==> r7c6 ≠ 8
biv-chain[3]: c8n8{r1 r7} - b8n8{r7c5 r9c6} - r4n8{c6 c1} ==> r1c1 ≠ 8
biv-chain[3]: b1n8{r1c2 r3c1} - r4n8{c1 c6} - r9n8{c6 c7} ==> r1c7 ≠ 8
biv-chain[3]: r3n9{c6 c7} - r4n9{c7 c1} - r9n9{c1 c6} ==> r1c6 ≠ 9, r7c6 ≠ 9
biv-chain[2]: b8n9{r9c6 r7c5} - b8n8{r7c5 r9c6} ==> r9c6 ≠ 1, r9c6 ≠ 3, r9c6 ≠ 7
biv-chain[2]: b8n8{r7c5 r9c6} - b8n9{r9c6 r7c5} ==> r7c5 ≠ 1, r7c5 ≠ 7
biv-chain[3]: c2n9{r6 r7} - b8n9{r7c5 r9c6} - r3n9{c6 c7} ==> r6c7 ≠ 9
biv-chain[3]: b6n9{r4c7 r6c8} - c2n9{r6 r7} - c5n9{r7 r1} ==> r1c7 ≠ 9
biv-chain[2]: b3n9{r3c7 r1c8} - b3n8{r1c8 r3c7} ==> r3c7 ≠ 1, r3c7 ≠ 2, r3c7 ≠ 3
biv-chain[2]: b3n8{r1c8 r3c7} - b3n9{r3c7 r1c8} ==> r1c8 ≠ 1, r1c8 ≠ 2, r1c8 ≠ 3
biv-chain[3]: c5n9{r7 r1} - b3n9{r1c8 r3c7} - r4n9{c7 c1} ==> r7c1 ≠ 9
biv-chain[3]: b7n9{r9c1 r7c2} - c5n9{r7 r1} - c8n9{r1 r6} ==> r6c1 ≠ 9
biv-chain[2]: b4n9{r6c2 r4c1} - b4n8{r4c1 r6c2} ==> r6c2 ≠ 1, r6c2 ≠ 2, r6c2 ≠ 3
biv-chain[2]: b4n8{r4c1 r6c2} - b4n9{r6c2 r4c1} ==> r4c1 ≠ 1, r4c1 ≠ 2

Code: Select all
;;; Resolution state RS1
   1237      12378     45        46        1279      1237      123       89        56       
   45        123       9         8         124       1236      56        123       7         
   12378     6         13        137       5         12379     89        4         23       
   89        5         14        17        3         1278      1279      6         124       
   46        123       7         9         12        56        45        123       8         
   123       89        136       56        1278      4         1237      12379     1235     
   137       1379      56        45        89        137       1237      12378     46       
   56        137       8         2         147       1357      46        137       9         
   1379      4         2         137       6         89        1378      5         13


and requiring only:

- either z-chains of max length 5: Show
;;; Resolution state RS1
z-chain[3]: b8n3{r8c6 r9c4} - c9n3{r9 r6} - c3n3{r6 .} ==> r3c6 ≠ 3
z-chain[3]: c4n3{r3 r9} - c9n3{r9 r6} - c3n3{r6 .} ==> r3c1 ≠ 3
biv-chain[4]: r6n5{c9 c4} - r6n6{c4 c3} - c3n3{r6 r3} - r3c9{n3 n2} ==> r6c9 ≠ 2
z-chain[4]: r4n2{c9 c6} - b5n8{r4c6 r6c5} - r7n8{c5 c8} - r7n2{c8 .} ==> r6c7 ≠ 2
z-chain[4]: c1n8{r3 r4} - r6n8{c2 c5} - r6n2{c5 c8} - c9n2{r4 .} ==> r3c1 ≠ 2
z-chain[4]: r5n3{c8 c2} - r8n3{c2 c6} - r2n3{c6 c2} - c3n3{r3 .} ==> r6c8 ≠ 3
z-chain[4]: r7n2{c7 c8} - c8n8{r7 r1} - c8n9{r1 r6} - c8n7{r6 .} ==> r7c7 ≠ 7
biv-chain[5]: r6n5{c9 c4} - r6n6{c4 c3} - c3n3{r6 r3} - c4n3{r3 r9} - r9c9{n3 n1} ==> r6c9 ≠ 1
z-chain[4]: c9n1{r9 r4} - r4c4{n1 n7} - r9c4{n7 n3} - r9c9{n3 .} ==> r9c7 ≠ 1
z-chain[4]: c9n1{r9 r4} - r4c4{n1 n7} - r9c4{n7 n3} - r9c9{n3 .} ==> r9c1 ≠ 1
z-chain[5]: c9n1{r4 r9} - b8n1{r9c4 r8c5} - b8n4{r8c5 r7c4} - c9n4{r7 r4} - r4c3{n4 .} ==> r4c6 ≠ 1
z-chain[4]: b5n1{r6c5 r4c4} - r4c3{n1 n4} - b1n4{r1c3 r2c1} - c5n4{r2 .} ==> r8c5 ≠ 1
z-chain[3]: b8n1{r8c6 r9c4} - c4n3{r9 r3} - r3c3{n3 .} ==> r3c6 ≠ 1
z-chain[5]: b5n1{r6c5 r4c4} - r4c3{n1 n4} - r1n4{c3 c4} - r2c5{n4 n2} - r5c5{n2 .} ==> r1c5 ≠ 1
z-chain[5]: b8n1{r8c6 r9c4} - c9n1{r9 r4} - r4n4{c9 c3} - r5c1{n4 n6} - c6n6{r5 .} ==> r2c6 ≠ 1
z-chain[3]: b3n1{r2c8 r1c7} - c6n1{r1 r8} - b7n1{r8c2 .} ==> r7c8 ≠ 1
z-chain[3]: b3n1{r2c8 r1c7} - c6n1{r1 r7} - r9n1{c4 .} ==> r8c8 ≠ 1
z-chain[5]: c2n9{r7 r6} - c2n8{r6 r1} - c2n7{r1 r8} - r8c8{n7 n3} - r5n3{c8 .} ==> r7c2 ≠ 3
z-chain[5]: b7n3{r9c1 r8c2} - r8n1{c2 c6} - r9n1{c4 c9} - c9n3{r9 r3} - c3n3{r3 .} ==> r6c1 ≠ 3
z-chain[5]: r6c1{n2 n1} - r4c3{n1 n4} - r1n4{c3 c4} - r2c5{n4 n1} - r5c5{n1 .} ==> r6c5 ≠ 2
z-chain[5]: b3n1{r1c7 r2c8} - r5n1{c8 c5} - b5n2{r5c5 r4c6} - b5n8{r4c6 r6c5} - c2n8{r6 .} ==> r1c2 ≠ 1
z-chain[5]: r6c1{n2 n1} - r4c3{n1 n4} - r4c9{n4 n1} - b9n1{r9c9 r7c7} - r7n2{c7 .} ==> r6c8 ≠ 2
hidden-single-in-a-row ==> r6c1 = 2
biv-chain[4]: c4n3{r9 r3} - c3n3{r3 r6} - r5c2{n3 n1} - r8n1{c2 c6} ==> r8c6 ≠ 3, r9c4 ≠ 1
hidden-single-in-a-row ==> r9c9 = 1
whip[1]: b8n1{r8c6 .} ==> r1c6 ≠ 1
biv-chain[2]: r8n3{c8 c2} - r5n3{c2 c8} ==> r2c8 ≠ 3, r7c8 ≠ 3
biv-chain[2]: c3n3{r6 r3} - b3n3{r3c9 r1c7} ==> r6c7 ≠ 3
biv-chain[2]: c4n3{r9 r3} - b3n3{r3c9 r1c7} ==> r9c7 ≠ 3
biv-chain[2]: r8n3{c2 c8} - c7n3{r7 r1} ==> r1c2 ≠ 3
biv-chain[2]: r5n3{c2 c8} - r8n3{c8 c2} ==> r2c2 ≠ 3
stte


- or bivalue-chains + t-whips of max length 3: Show
;;; Resolution state RS1
t-whip[3]: c4n3{r9 r3} - c3n3{r3 r6} - c9n3{r6 .} ==> r9c7 ≠ 3, r9c1 ≠ 3
t-whip[2]: b7n3{r7c2 r8c2} - r5n3{c2 .} ==> r7c8 ≠ 3
t-whip[3]: b7n3{r7c2 r8c2} - r5n3{c2 c8} - r2n3{c8 .} ==> r7c6 ≠ 3
t-whip[3]: c3n3{r6 r3} - c4n3{r3 r9} - c9n3{r9 .} ==> r6c1 ≠ 3, r6c8 ≠ 3, r6c7 ≠ 3
t-whip[2]: c7n3{r1 r7} - b7n3{r7c2 .} ==> r1c2 ≠ 3
biv-chain[3]: r6n3{c3 c9} - r6n5{c9 c4} - r6n6{c4 c3} ==> r6c3 ≠ 1
biv-chain[3]: r6n3{c9 c3} - r6n6{c3 c4} - r6n5{c4 c9} ==> r6c9 ≠ 1, r6c9 ≠ 2
biv-chain[3]: r4c4{n7 n1} - c9n1{r4 r9} - r9n3{c9 c4} ==> r9c4 ≠ 7
biv-chain[2]: r9c9{n1 n3} - r9c4{n3 n1} ==> r9c1 ≠ 1, r9c7 ≠ 1
biv-chain[3]: b3n1{r2c8 r1c7} - c7n3{r1 r7} - b9n2{r7c7 r7c8} ==> r7c8 ≠ 1, r2c8 ≠ 2
biv-chain[3]: r2c8{n1 n3} - c7n3{r1 r7} - r9c9{n3 n1} ==> r8c8 ≠ 1
t-whip[3]: c7n3{r1 r7} - b7n3{r7c2 r8c2} - r5n3{c2 .} ==> r2c8 ≠ 3
naked-single ==> r2c8 = 1
biv-chain[3]: b9n2{r7c7 r7c8} - r5c8{n2 n3} - r8c8{n3 n7} ==> r7c7 ≠ 7
t-whip[3]: r2n3{c6 c2} - r5n3{c2 c8} - r8n3{c8 .} ==> r3c6 ≠ 3, r1c6 ≠ 3
biv-chain[3]: c6n3{r2 r8} - c6n5{r8 r5} - c6n6{r5 r2} ==> r2c6 ≠ 2
biv-chain[2]: r2n2{c5 c2} - b4n2{r5c2 r6c1} ==> r6c5 ≠ 2
t-whip[2]: c9n2{r3 r4} - r6n2{c8 .} ==> r3c1 ≠ 2
biv-chain[3]: c6n3{r8 r2} - c6n6{r2 r5} - c6n5{r5 r8} ==> r8c6 ≠ 1, r8c6 ≠ 7
biv-chain[2]: r8n1{c5 c2} - r5n1{c2 c5} ==> r1c5 ≠ 1, r6c5 ≠ 1
biv-chain[2]: r5n1{c2 c5} - r8n1{c5 c2} ==> r1c2 ≠ 1, r7c2 ≠ 1
biv-chain[2]: r1n1{c6 c1} - c3n1{r3 r4} ==> r4c6 ≠ 1
biv-chain[3]: c2n1{r8 r5} - r5n3{c2 c8} - r8c8{n3 n7} ==> r8c2 ≠ 7
biv-chain[2]: b8n7{r8c5 r7c6} - c2n7{r7 r1} ==> r1c5 ≠ 7
biv-chain[3]: r8n7{c8 c5} - r6c5{n7 n8} - r7n8{c5 c8} ==> r7c8 ≠ 7
biv-chain[2]: c5n7{r6 r8} - c8n7{r8 r6} ==> r6c7 ≠ 7
biv-chain[2]: b6n7{r6c8 r4c7} - b6n9{r4c7 r6c8} ==> r6c8 ≠ 2
biv-chain[2]: b6n9{r4c7 r6c8} - b6n7{r6c8 r4c7} ==> r4c7 ≠ 1, r4c7 ≠ 2
biv-chain[2]: b3n2{r1c7 r3c9} - r4n2{c9 c6} ==> r1c6 ≠ 2
biv-chain[2]: r1c6{n7 n1} - r7c6{n1 n7} ==> r3c6 ≠ 7, r4c6 ≠ 7
biv-chain[2]: c6n7{r7 r1} - r3n7{c4 c1} ==> r7c1 ≠ 7
biv-chain[2]: r7c1{n3 n1} - r8c2{n1 n3} ==> r7c2 ≠ 3
biv-chain[2]: b3n3{r3c9 r1c7} - r7n3{c7 c1} ==> r3c1 ≠ 3
biv-chain[2]: b7n7{r9c1 r7c2} - c6n7{r7 r1} ==> r1c1 ≠ 7
biv-chain[2]: b1n7{r3c1 r1c2} - b1n8{r1c2 r3c1} ==> r3c1 ≠ 1
biv-chain[2]: b1n8{r1c2 r3c1} - b1n7{r3c1 r1c2} ==> r1c2 ≠ 2
biv-chain[2]: r7c6{n1 n7} - r1c6{n7 n1} ==> r3c6 ≠ 1
biv-chain[2]: b2n1{r3c4 r1c6} - b2n7{r1c6 r3c4} ==> r3c4 ≠ 3
stte


This turns this puzzle into an excellent example for training on bivalue chains and z-chains or t-whips (in addition to training on Subsets).
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles