.
Resolution state after Singles:
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 1234578 12378 1345 ! 13467 12479 123679 ! 1235689 12389 12356 !
! 12345 123 9 ! 8 124 1236 ! 12356 123 7 !
! 12378 6 13 ! 137 5 12379 ! 12389 4 123 !
+-------------------------+-------------------------+-------------------------+
! 12489 5 14 ! 17 3 1278 ! 12479 6 124 !
! 12346 123 7 ! 9 12 1256 ! 12345 123 8 !
! 123689 12389 136 ! 1567 1278 4 ! 123579 12379 1235 !
+-------------------------+-------------------------+-------------------------+
! 135679 1379 1356 ! 13457 14789 135789 ! 1234678 12378 12346 !
! 13567 137 8 ! 2 147 1357 ! 13467 137 9 !
! 1379 4 2 ! 137 6 13789 ! 1378 5 13 !
+-------------------------+-------------------------+-------------------------+
263 candidates, 2099 csp-links and 2099 links. Density = 6.09%
First trying to find as many Subsets as possible (25 found, including 10 fish):
hidden-pairs-in-a-block: b5{n5 n6}{r5c6 r6c4} ==> r6c4 ≠ 7, r6c4 ≠ 1, r5c6 ≠ 2, r5c6 ≠ 1
naked-triplets-in-a-row: r5{c2 c5 c8}{n3 n2 n1} ==> r5c7 ≠ 3, r5c7 ≠ 2, r5c7 ≠ 1, r5c1 ≠ 3, r5c1 ≠ 2, r5c1 ≠ 1
naked-triplets-in-a-column: c4{r3 r4 r9}{n3 n7 n1} ==> r7c4 ≠ 7, r7c4 ≠ 3, r7c4 ≠ 1, r1c4 ≠ 7, r1c4 ≠ 3, r1c4 ≠ 1
swordfish-in-columns: n6{c3 c4 c9}{r7 r6 r1} ==> r7c7 ≠ 6, r7c1 ≠ 6, r6c1 ≠ 6, r1c7 ≠ 6, r1c6 ≠ 6
swordfish-in-columns: n9{c2 c5 c8}{r6 r7 r1} ==> r7c6 ≠ 9, r7c1 ≠ 9, r6c7 ≠ 9, r6c1 ≠ 9, r1c7 ≠ 9, r1c6 ≠ 9
swordfish-in-columns: n4{c3 c4 c9}{r4 r1 r7} ==> r7c7 ≠ 4, r7c5 ≠ 4, r4c7 ≠ 4, r4c1 ≠ 4, r1c5 ≠ 4, r1c1 ≠ 4
hidden-pairs-in-a-block: b9{n4 n6}{r7c9 r8c7} ==> r8c7 ≠ 7, r8c7 ≠ 3, r8c7 ≠ 1, r7c9 ≠ 3, r7c9 ≠ 2, r7c9 ≠ 1
swordfish-in-rows: n8{r3 r4 r9}{c7 c1 c6} ==> r7c7 ≠ 8, r7c6 ≠ 8, r6c1 ≠ 8, r1c7 ≠ 8, r1c1 ≠ 8
hidden-pairs-in-a-block: b3{n8 n9}{r1c8 r3c7} ==> r3c7 ≠ 3, r3c7 ≠ 2, r3c7 ≠ 1, r1c8 ≠ 3, r1c8 ≠ 2, r1c8 ≠ 1
hidden-pairs-in-a-block: b4{n8 n9}{r4c1 r6c2} ==> r6c2 ≠ 3, r6c2 ≠ 2, r6c2 ≠ 1, r4c1 ≠ 2, r4c1 ≠ 1
hidden-pairs-in-a-block: b8{n8 n9}{r7c5 r9c6} ==> r9c6 ≠ 7, r9c6 ≠ 3, r9c6 ≠ 1, r7c5 ≠ 7, r7c5 ≠ 1
swordfish-in-rows: n5{r2 r5 r8}{c1 c7 c6} ==> r7c6 ≠ 5, r7c1 ≠ 5, r6c7 ≠ 5, r1c7 ≠ 5, r1c1 ≠ 5
hidden-pairs-in-a-block: b1{n4 n5}{r1c3 r2c1} ==> r2c1 ≠ 3, r2c1 ≠ 2, r2c1 ≠ 1, r1c3 ≠ 3, r1c3 ≠ 1
hidden-pairs-in-a-block: b3{n5 n6}{r1c9 r2c7} ==> r2c7 ≠ 3, r2c7 ≠ 2, r2c7 ≠ 1, r1c9 ≠ 3, r1c9 ≠ 2, r1c9 ≠ 1
hidden-pairs-in-a-block: b7{n5 n6}{r7c3 r8c1} ==> r8c1 ≠ 7, r8c1 ≠ 3, r8c1 ≠ 1, r7c3 ≠ 3, r7c3 ≠ 1
swordfish-in-columns: n3{c3 c4 c9}{r6 r3 r9} ==> r9c7 ≠ 3, r9c1 ≠ 3, r6c8 ≠ 3, r6c7 ≠ 3, r6c1 ≠ 3, r3c6 ≠ 3, r3c1 ≠ 3
x-wing-in-columns: n3{c1 c7}{r1 r7} ==> r7c8 ≠ 3, r7c6 ≠ 3, r7c2 ≠ 3, r1c6 ≠ 3, r1c2 ≠ 3
hidden-triplets-in-a-column: c6{n3 n5 n6}{r2 r8 r5} ==> r8c6 ≠ 7, r8c6 ≠ 1, r2c6 ≠ 2, r2c6 ≠ 1
hidden-triplets-in-a-row: r6{n3 n5 n6}{c3 c9 c4} ==> r6c9 ≠ 2, r6c9 ≠ 1, r6c3 ≠ 1
swordfish-in-columns: n1{c3 c4 c9}{r4 r3 r9} ==> r9c7 ≠ 1, r9c1 ≠ 1, r4c7 ≠ 1, r4c6 ≠ 1, r3c6 ≠ 1, r3c1 ≠ 1
hidden-pairs-in-a-row: r9{n1 n3}{c4 c9} ==> r9c4 ≠ 7
swordfish-in-columns: n1{c1 c6 c7}{r6 r7 r1} ==> r7c8 ≠ 1, r7c2 ≠ 1, r6c8 ≠ 1, r6c5 ≠ 1, r1c5 ≠ 1, r1c2 ≠ 1
naked-pairs-in-a-block: b7{r7c2 r9c1}{n7 n9} ==> r8c2 ≠ 7, r7c1 ≠ 7
naked-triplets-in-a-column: c2{r2 r5 r8}{n1 n2 n3} ==> r1c2 ≠ 2
finned-jellyfish-in-rows: n7{r9 r6 r8 r3}{c1 c7 c8 c5} ==> r1c5 ≠ 7
PUZZLE 0 IS NOT SOLVED. 61 VALUES MISSING.
- Code: Select all
CURRENT RESOLUTION STATE:
1237 78 45 46 29 127 123 89 56
45 123 9 8 124 36 56 123 7
278 6 13 137 5 279 89 4 123
89 5 14 17 3 278 279 6 124
46 123 7 9 12 56 45 123 8
12 89 36 56 278 4 127 279 35
13 79 56 45 89 17 1237 278 46
56 13 8 2 147 35 46 137 9
79 4 2 13 6 89 78 5 13
From this point on, there are many possibilities:
- either with the standard simplest-first strategy, requiring no more than Subsets[3] and bivalue-chains[3]:
- Code: Select all
biv-chain[3]: r3c3{n1 n3} - c4n3{r3 r9} - r9n1{c4 c9} ==> r3c9 ≠ 1
biv-chain[3]: r3c9{n2 n3} - c7n3{r1 r7} - b9n2{r7c7 r7c8} ==> r2c8 ≠ 2
biv-chain[2]: r2n2{c5 c2} - b4n2{r5c2 r6c1} ==> r6c5 ≠ 2
biv-chain[3]: r2c8{n1 n3} - r1n3{c7 c1} - r3c3{n3 n1} ==> r2c2 ≠ 1
biv-chain[3]: r2c2{n2 n3} - r1n3{c1 c7} - b3n2{r1c7 r3c9} ==> r3c1 ≠ 2
naked-pairs-in-a-block: b1{r1c2 r3c1}{n7 n8} ==> r1c1 ≠ 7
biv-chain[3]: c4n7{r4 r3} - r3c1{n7 n8} - r4n8{c1 c6} ==> r4c6 ≠ 7
biv-chain[3]: r4c6{n2 n8} - r6c5{n8 n7} - r4n7{c4 c7} ==> r4c7 ≠ 2
x-wing-in-rows: n2{r3 r4}{c6 c9} ==> r1c6 ≠ 2
naked-pairs-in-a-column: c6{r1 r7}{n1 n7} ==> r3c6 ≠ 7
naked-pairs-in-a-block: b2{r1c5 r3c6}{n2 n9} ==> r2c5 ≠ 2
stte
- or with a single step. There are many possibilities.
There are 18 W1-anti-backdoors: n6r8c7 n4r8c5 n5r8c1 n4r7c9 n5r7c4 n6r7c3 n5r6c9 n6r6c4 n4r5c7 n5r5c6 n6r5c1 n4r4c3 n5r2c7 n6r2c6 n4r2c1 n6r1c9 n4r1c4 n5r1c3, all of which give rise to a single-step solution (after the initial Subsets).
Here are the simplest solutions:
1) Using a bivalue-chain [5]
- Code: Select all
biv-chain[5]: r2n6{c7 c6} - b2n3{r2c6 r3c4} - c4n7{r3 r4} - c5n7{r6 r8} - r8n4{c5 c7} ==> r8c7 ≠ 6
stte
- Code: Select all
biv-chain[5]: r8c6{n5 n3} - b2n3{r2c6 r3c4} - c4n7{r3 r4} - c5n7{r6 r8} - b8n4{r8c5 r7c4} ==> r7c4 ≠ 5
stte
- Code: Select all
biv-chain[5]: c5n4{r2 r8} - c5n7{r8 r6} - c4n7{r4 r3} - b2n3{r3c4 r2c6} - b2n6{r2c6 r1c4} ==> r1c4 ≠ 4
stte
2) Using a z-chain[4]:
- Code: Select all
z-chain[4]: b8n7{r8c5 r7c6} - b8n1{r7c6 r9c4} - r4c4{n1 n7} - c5n7{r6 .} ==> r8c5 ≠ 4
stte