Tatooine Looking Glass

Post puzzles for others to solve here.

Tatooine Looking Glass

Postby mith » Tue Apr 27, 2021 6:57 pm

Code: Select all
+-------+-------+-------+
| . . . | . . . | 1 . . |
| . . 2 | 3 . . | . . 4 |
| . 5 . | . 6 . | . 7 . |
+-------+-------+-------+
| . 6 . | . 8 . | . 5 . |
| . . 4 | 2 . . | . . 3 |
| . . . | . . 7 | . . . |
+-------+-------+-------+
| 8 . . | . . . | 2 . . |
| . . 3 | 4 . . | . . 8 |
| . 7 . | . 5 . | . 6 . |
+-------+-------+-------+
......1....23....4.5..6..7..6..8..5...42....3.....7...8.....2....34....8.7..5..6.


Made by hand today, so it's not quite so bonkers with (required) fish...
mith
 
Posts: 996
Joined: 14 July 2020

Re: Tatooine Looking Glass

Postby Leren » Tue Apr 27, 2021 8:42 pm

Code: Select all
*---------------------------------------------------*
| 34679 3489  6789 | 57  2479 24589 | 1    23  56   |
| 1679  189   2    | 3   179  1589  | 56  a89  4    |
| 1349  5     189  |c19  6    12489 |b389  7  b29   |
|------------------+----------------+---------------|
| 12379 6     179  |d19  8    34    | 49   5   1279 |
| 57    189   4    | 2  e19   56    | 67  f189 3    |
| 12359 12389 1589 | 56  34   7     | 489  24  1269 |
|------------------+----------------+---------------|
| 8     149   56   | 67  139  139   | 2    34  57   |
| 56    129   3    | 4   1279 1269  | 57  g1-9 8    |
| 24    7     19   | 8   5    23    | 34   6   19   |
*---------------------------------------------------*

(9) r2c8 = r3c79 - r3c4 = (9-1) r4c4 = r5c5 - r5c8 = (1) r8c8 => - 9 r8c8; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Tatooine Looking Glass

Postby pjb » Tue Apr 27, 2021 11:13 pm

Hard to match Leren's chain
Code: Select all
 34679   3489    6789   | 57     2479   24589  | 1     e23     56     
 1679    189     2      | 3      179    1589   | 56    g89     4     
 1349    5       189    |c19     6      12489  |f389    7     d29     
------------------------+----------------------+---------------------
 12379   6       179    |b19     8      34     | 49     5      1279   
 57      189     4      | 2     a19     56     | 67     89-1   3     
 12359   12389   1589   | 56     34     7      | 489    24     1269   
------------------------+----------------------+---------------------
 8       149     56     | 67     139    139    | 2      34     57     
 56      129     3      | 4      279-1  1269   | 57    h19     8     
 24      7       19     | 8      5      23     | 34     6      19

(1=9)r5c5 - (9=1)r4c4 - (1=9*)r3c4 - (9=2)r3c9 - (2=3)r1c8 - (3|9*=8)r3c7 - (8=9)r2c8 - (9=1)r8c8 => -1 r5c8, -1 r8c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Tatooine Looking Glass

Postby denis_berthier » Wed Apr 28, 2021 3:24 am

.
Trying to find as many Subsets as possible (I found 24). Although all the rules are active, only short bivalue-chains are needed in addition to Subsets.
Code: Select all
Resolution state after Singles:
   +-------------------+-------------------+-------------------+
   ! 34679 3489  6789  ! 5789  2479  24589 ! 1     2389  2569  !
   ! 1679  189   2     ! 3     179   1589  ! 5689  89    4     !
   ! 1349  5     189   ! 189   6     12489 ! 389   7     29    !
   +-------------------+-------------------+-------------------+
   ! 12379 6     179   ! 19    8     1349  ! 479   5     1279  !
   ! 1579  189   4     ! 2     19    1569  ! 6789  189   3     !
   ! 12359 12389 1589  ! 1569  1349  7     ! 4689  12489 1269  !
   +-------------------+-------------------+-------------------+
   ! 8     149   1569  ! 1679  1379  1369  ! 2     1349  1579  !
   ! 12569 129   3     ! 4     1279  1269  ! 579   19    8     !
   ! 1249  7     19    ! 189   5     12389 ! 349   6     19    !
   +-------------------+-------------------+-------------------+
217 candidates, 1442 csp-links and 1442 links. Density = 6.15%

naked-pairs-in-a-row: r9{c3 c9}{n1 n9} ==> r9c7 ≠ 9, r9c6 ≠ 9, r9c6 ≠ 1, r9c4 ≠ 9, r9c4 ≠ 1, r9c1 ≠ 9, r9c1 ≠ 1
naked-single ==> r9c4 = 8
naked-pairs-in-a-column: c4{r3 r4}{n1 n9} ==> r7c4 ≠ 9, r7c4 ≠ 1, r6c4 ≠ 9, r6c4 ≠ 1, r1c4 ≠ 9
naked-pairs-in-a-block: b9{r8c8 r9c9}{n1 n9} ==> r8c7 ≠ 9, r7c9 ≠ 9, r7c9 ≠ 1, r7c8 ≠ 9, r7c8 ≠ 1
naked-pairs-in-a-block: b5{r4c4 r5c5}{n1 n9} ==> r6c5 ≠ 9, r6c5 ≠ 1, r5c6 ≠ 9, r5c6 ≠ 1, r4c6 ≠ 9, r4c6 ≠ 1
hidden-pairs-in-a-block: b7{n5 n6}{r7c3 r8c1} ==> r8c1 ≠ 9, r8c1 ≠ 2, r8c1 ≠ 1, r7c3 ≠ 9, r7c3 ≠ 1
hidden-pairs-in-a-block: b3{n5 n6}{r1c9 r2c7} ==> r2c7 ≠ 9, r2c7 ≠ 8, r1c9 ≠ 9, r1c9 ≠ 2
finned-x-wing-in-columns: n9{c4 c7}{r3 r4} ==> r4c9 ≠ 9
naked-triplets-in-a-row: r7{c3 c4 c9}{n5 n6 n7} ==> r7c6 ≠ 6, r7c5 ≠ 7
naked-triplets-in-a-row: r5{c2 c5 c8}{n8 n9 n1} ==> r5c7 ≠ 9, r5c7 ≠ 8, r5c1 ≠ 9, r5c1 ≠ 1
naked-triplets-in-a-column: c7{r2 r5 r8}{n5 n6 n7} ==> r6c7 ≠ 6, r4c7 ≠ 7
naked-triplets-in-a-column: c8{r2 r5 r8}{n9 n8 n1} ==> r6c8 ≠ 9, r6c8 ≠ 8, r6c8 ≠ 1, r1c8 ≠ 9, r1c8 ≠ 8
finned-x-wing-in-rows: n1{r9 r6}{c9 c3} ==> r4c3 ≠ 1
swordfish-in-columns: n5{c3 c4 c9}{r7 r6 r1} ==> r6c1 ≠ 5, r1c6 ≠ 5
swordfish-in-columns: n4{c2 c5 c8}{r7 r1 r6} ==> r6c7 ≠ 4, r1c6 ≠ 4, r1c1 ≠ 4
swordfish-in-columns: n2{c2 c5 c8}{r6 r8 r1} ==> r8c6 ≠ 2, r6c9 ≠ 2, r6c1 ≠ 2, r1c6 ≠ 2
hidden-pairs-in-a-block: b2{n2 n4}{r1c5 r3c6} ==> r3c6 ≠ 9, r3c6 ≠ 8, r3c6 ≠ 1, r1c5 ≠ 9, r1c5 ≠ 7
naked-triplets-in-a-column: c6{r3 r4 r9}{n2 n4 n3} ==> r7c6 ≠ 3
swordfish-in-columns: n7{c3 c4 c9}{r4 r1 r7} ==> r4c1 ≠ 7, r1c1 ≠ 7
swordfish-in-rows: n3{r3 r4 r9}{c7 c1 c6} ==> r6c1 ≠ 3, r1c1 ≠ 3
hidden-pairs-in-a-block: b1{n3 n4}{r1c2 r3c1} ==> r3c1 ≠ 9, r3c1 ≠ 1, r1c2 ≠ 9, r1c2 ≠ 8
hidden-pairs-in-a-block: b4{n2 n3}{r4c1 r6c2} ==> r6c2 ≠ 9, r6c2 ≠ 8, r6c2 ≠ 1, r4c1 ≠ 9, r4c1 ≠ 1
x-wing-in-columns: n8{c2 c8}{r2 r5} ==> r2c6 ≠ 8
hidden-single-in-a-block ==> r1c6 = 8
whip[1]: r1n9{c3 .} ==> r2c1 ≠ 9, r2c2 ≠ 9, r3c3 ≠ 9
naked-pairs-in-a-block: b1{r2c2 r3c3}{n1 n8} ==> r2c1 ≠ 1
singles ==> r6c1 = 1, r1c1 = 9
biv-chain[3]: r3c9{n2 n9} - c4n9{r3 r4} - r4n1{c4 c9} ==> r4c9 ≠ 2
singles ==> r6c8 = 2, r1c8 = 3, r1c2 = 4, r1c5 = 2, r3c6 = 4, r4c6 = 3, r4c1 = 2, r9c1 = 4, r9c7 = 3, r6c5 = 4, r9c6 = 2, r3c1 = 3, r7c8 = 4, r6c2 = 3, r4c7 = 4, r8c2 = 2, r7c5 = 3 r3c9 = 2
biv-chain[3]: r5c5{n1 n9} - c2n9{r5 r7} - c2n1{r7 r2} ==> r2c5 ≠ 1
x-wing-in-columns: n1{c5 c8}{r5 r8} ==> r8c6 ≠ 1
biv-chain[3]: c5n1{r5 r8} - r7c6{n1 n9} - c2n9{r7 r5} ==> r5c5 ≠ 9
stte

On seeing Leren's 1-step solution, I didn't try to find better.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles