.
Trying to find as many Subsets as possible (I found 24). Although all the rules are active, only short bivalue-chains are needed in addition to Subsets.
- Code: Select all
Resolution state after Singles:
+-------------------+-------------------+-------------------+
! 34679 3489 6789 ! 5789 2479 24589 ! 1 2389 2569 !
! 1679 189 2 ! 3 179 1589 ! 5689 89 4 !
! 1349 5 189 ! 189 6 12489 ! 389 7 29 !
+-------------------+-------------------+-------------------+
! 12379 6 179 ! 19 8 1349 ! 479 5 1279 !
! 1579 189 4 ! 2 19 1569 ! 6789 189 3 !
! 12359 12389 1589 ! 1569 1349 7 ! 4689 12489 1269 !
+-------------------+-------------------+-------------------+
! 8 149 1569 ! 1679 1379 1369 ! 2 1349 1579 !
! 12569 129 3 ! 4 1279 1269 ! 579 19 8 !
! 1249 7 19 ! 189 5 12389 ! 349 6 19 !
+-------------------+-------------------+-------------------+
217 candidates, 1442 csp-links and 1442 links. Density = 6.15%
naked-pairs-in-a-row: r9{c3 c9}{n1 n9} ==> r9c7 ≠ 9, r9c6 ≠ 9, r9c6 ≠ 1, r9c4 ≠ 9, r9c4 ≠ 1, r9c1 ≠ 9, r9c1 ≠ 1
naked-single ==> r9c4 = 8
naked-pairs-in-a-column: c4{r3 r4}{n1 n9} ==> r7c4 ≠ 9, r7c4 ≠ 1, r6c4 ≠ 9, r6c4 ≠ 1, r1c4 ≠ 9
naked-pairs-in-a-block: b9{r8c8 r9c9}{n1 n9} ==> r8c7 ≠ 9, r7c9 ≠ 9, r7c9 ≠ 1, r7c8 ≠ 9, r7c8 ≠ 1
naked-pairs-in-a-block: b5{r4c4 r5c5}{n1 n9} ==> r6c5 ≠ 9, r6c5 ≠ 1, r5c6 ≠ 9, r5c6 ≠ 1, r4c6 ≠ 9, r4c6 ≠ 1
hidden-pairs-in-a-block: b7{n5 n6}{r7c3 r8c1} ==> r8c1 ≠ 9, r8c1 ≠ 2, r8c1 ≠ 1, r7c3 ≠ 9, r7c3 ≠ 1
hidden-pairs-in-a-block: b3{n5 n6}{r1c9 r2c7} ==> r2c7 ≠ 9, r2c7 ≠ 8, r1c9 ≠ 9, r1c9 ≠ 2
finned-x-wing-in-columns: n9{c4 c7}{r3 r4} ==> r4c9 ≠ 9
naked-triplets-in-a-row: r7{c3 c4 c9}{n5 n6 n7} ==> r7c6 ≠ 6, r7c5 ≠ 7
naked-triplets-in-a-row: r5{c2 c5 c8}{n8 n9 n1} ==> r5c7 ≠ 9, r5c7 ≠ 8, r5c1 ≠ 9, r5c1 ≠ 1
naked-triplets-in-a-column: c7{r2 r5 r8}{n5 n6 n7} ==> r6c7 ≠ 6, r4c7 ≠ 7
naked-triplets-in-a-column: c8{r2 r5 r8}{n9 n8 n1} ==> r6c8 ≠ 9, r6c8 ≠ 8, r6c8 ≠ 1, r1c8 ≠ 9, r1c8 ≠ 8
finned-x-wing-in-rows: n1{r9 r6}{c9 c3} ==> r4c3 ≠ 1
swordfish-in-columns: n5{c3 c4 c9}{r7 r6 r1} ==> r6c1 ≠ 5, r1c6 ≠ 5
swordfish-in-columns: n4{c2 c5 c8}{r7 r1 r6} ==> r6c7 ≠ 4, r1c6 ≠ 4, r1c1 ≠ 4
swordfish-in-columns: n2{c2 c5 c8}{r6 r8 r1} ==> r8c6 ≠ 2, r6c9 ≠ 2, r6c1 ≠ 2, r1c6 ≠ 2
hidden-pairs-in-a-block: b2{n2 n4}{r1c5 r3c6} ==> r3c6 ≠ 9, r3c6 ≠ 8, r3c6 ≠ 1, r1c5 ≠ 9, r1c5 ≠ 7
naked-triplets-in-a-column: c6{r3 r4 r9}{n2 n4 n3} ==> r7c6 ≠ 3
swordfish-in-columns: n7{c3 c4 c9}{r4 r1 r7} ==> r4c1 ≠ 7, r1c1 ≠ 7
swordfish-in-rows: n3{r3 r4 r9}{c7 c1 c6} ==> r6c1 ≠ 3, r1c1 ≠ 3
hidden-pairs-in-a-block: b1{n3 n4}{r1c2 r3c1} ==> r3c1 ≠ 9, r3c1 ≠ 1, r1c2 ≠ 9, r1c2 ≠ 8
hidden-pairs-in-a-block: b4{n2 n3}{r4c1 r6c2} ==> r6c2 ≠ 9, r6c2 ≠ 8, r6c2 ≠ 1, r4c1 ≠ 9, r4c1 ≠ 1
x-wing-in-columns: n8{c2 c8}{r2 r5} ==> r2c6 ≠ 8
hidden-single-in-a-block ==> r1c6 = 8
whip[1]: r1n9{c3 .} ==> r2c1 ≠ 9, r2c2 ≠ 9, r3c3 ≠ 9
naked-pairs-in-a-block: b1{r2c2 r3c3}{n1 n8} ==> r2c1 ≠ 1
singles ==> r6c1 = 1, r1c1 = 9
biv-chain[3]: r3c9{n2 n9} - c4n9{r3 r4} - r4n1{c4 c9} ==> r4c9 ≠ 2
singles ==> r6c8 = 2, r1c8 = 3, r1c2 = 4, r1c5 = 2, r3c6 = 4, r4c6 = 3, r4c1 = 2, r9c1 = 4, r9c7 = 3, r6c5 = 4, r9c6 = 2, r3c1 = 3, r7c8 = 4, r6c2 = 3, r4c7 = 4, r8c2 = 2, r7c5 = 3 r3c9 = 2
biv-chain[3]: r5c5{n1 n9} - c2n9{r5 r7} - c2n1{r7 r2} ==> r2c5 ≠ 1
x-wing-in-columns: n1{c5 c8}{r5 r8} ==> r8c6 ≠ 1
biv-chain[3]: c5n1{r5 r8} - r7c6{n1 n9} - c2n9{r7 r5} ==> r5c5 ≠ 9
stte
On seeing Leren's 1-step solution, I didn't try to find better.