.
First trying to get as many Subsets as possible (I find 20)
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = SFin
*** Using CLIPS 6.32-r779
*** Download from:
https://github.com/denis-berthier/CSP-Rules-V2.1***********************************************************************************************
- Code: Select all
Starting non trivial part of solution with the following RESOLUTION STATE:
9 13467 1234 2356 3568 123568 124578 1278 245
134 134 8 7 359 12359 12459 129 6
167 5 12 269 4 12689 12789 3 29
3478 2 349 3469 1 3679 34689 5 349
134 1349 6 8 359 2359 12349 129 7
5 134789 1349 23469 3679 23679 1234689 12689 2349
346 3469 7 1 3569 3569 23569 269 8
1368 13689 1359 3569 2 356789 35679 4 359
2 3689 359 3569 356789 4 35679 679 1
242 candidates, 1738 csp-links and 1738 links. Density = 5.96%
hidden-pairs-in-a-block: b8{n7 n8}{r8c6 r9c5} ==> r9c5 ≠ 9, r9c5 ≠ 6, r9c5 ≠ 5, r9c5 ≠ 3, r8c6 ≠ 9, r8c6 ≠ 6, r8c6 ≠ 5, r8c6 ≠ 3
hidden-pairs-in-a-block: b4{n7 n8}{r4c1 r6c2} ==> r6c2 ≠ 9, r6c2 ≠ 4, r6c2 ≠ 3, r6c2 ≠ 1, r4c1 ≠ 4, r4c1 ≠ 3
hidden-pairs-in-a-block: b1{n6 n7}{r1c2 r3c1} ==> r3c1 ≠ 1, r1c2 ≠ 4, r1c2 ≠ 3, r1c2 ≠ 1
swordfish-in-columns: n5{c3 c4 c9}{r8 r9 r1} ==> r9c7 ≠ 5, r8c7 ≠ 5, r1c7 ≠ 5, r1c6 ≠ 5, r1c5 ≠ 5
swordfish-in-rows: n7{r3 r4 r8}{c7 c1 c6} ==> r9c7 ≠ 7, r6c6 ≠ 7, r1c7 ≠ 7
swordfish-in-columns: n2{c3 c4 c9}{r3 r1 r6} ==> r6c8 ≠ 2, r6c7 ≠ 2, r6c6 ≠ 2, r3c7 ≠ 2, r3c6 ≠ 2, r1c8 ≠ 2, r1c7 ≠ 2, r1c6 ≠ 2
swordfish-in-rows: n4{r2 r5 r7}{c2 c7 c1} ==> r6c7 ≠ 4, r4c7 ≠ 4, r1c7 ≠ 4
hidden-pairs-in-a-block: b3{n4 n5}{r1c9 r2c7} ==> r2c7 ≠ 9, r2c7 ≠ 2, r2c7 ≠ 1, r1c9 ≠ 2
hidden-triplets-in-a-column: c7{n2 n4 n5}{r7 r5 r2} ==> r7c7 ≠ 9, r7c7 ≠ 6, r7c7 ≠ 3, r5c7 ≠ 9, r5c7 ≠ 3, r5c7 ≠ 1
hidden-triplets-in-a-row: r1{n2 n4 n5}{c4 c3 c9} ==> r1c4 ≠ 6, r1c4 ≠ 3, r1c3 ≠ 3, r1c3 ≠ 1
whip[1]: r1n3{c6 .} ==> r2c5 ≠ 3, r2c6 ≠ 3
jellyfish-in-columns: n3{c3 c9 c4 c7}{r9 r8 r6 r4} ==> r9c2 ≠ 3, r8c2 ≠ 3, r8c1 ≠ 3, r6c6 ≠ 3, r6c5 ≠ 3, r4c6 ≠ 3
naked-triplets-in-a-block: b5{r4c6 r6c5 r6c6}{n6 n7 n9} ==> r6c4 ≠ 9, r6c4 ≠ 6, r5c6 ≠ 9, r5c5 ≠ 9, r4c4 ≠ 9, r4c4 ≠ 6
naked-triplets-in-a-row: r4{c3 c4 c9}{n9 n3 n4} ==> r4c7 ≠ 9, r4c7 ≠ 3, r4c6 ≠ 9
whip[1]: b5n9{r6c6 .} ==> r6c3 ≠ 9, r6c7 ≠ 9, r6c8 ≠ 9, r6c9 ≠ 9
jellyfish-in-columns: n9{c3 c9 c4 c7}{r9 r4 r8 r3} ==> r9c8 ≠ 9, r9c2 ≠ 9, r8c2 ≠ 9, r3c6 ≠ 9
naked-triplets-in-a-block: b7{r8c1 r8c2 r9c2}{n8 n1 n6} ==> r8c3 ≠ 1, r7c2 ≠ 6, r7c1 ≠ 6
naked-triplets-in-a-column: c1{r2 r5 r7}{n3 n1 n4} ==> r8c1 ≠ 1
hidden-single-in-a-block ==> r8c2 = 1
naked-triplets-in-a-row: r9{c2 c5 c8}{n6 n8 n7} ==> r9c7 ≠ 6, r9c4 ≠ 6
x-wing-in-columns: n6{c1 c4}{r3 r8} ==> r8c7 ≠ 6, r3c6 ≠ 6
whip[1]: b9n6{r9c8 .} ==> r6c8 ≠ 6
swordfish-in-columns: n8{c2 c5 c8}{r6 r9 r1} ==> r6c7 ≠ 8, r1c7 ≠ 8, r1c6 ≠ 8
naked-single ==> r1c7 = 1
naked-pairs-in-a-block: b3{r2c8 r3c9}{n2 n9} ==> r3c7 ≠ 9
whip[1]: c7n9{r9 .} ==> r7c8 ≠ 9, r8c9 ≠ 9
PUZZLE NOT SOLVED. 57 VALUES MISSING.
- Code: Select all
CURRENT RESOLUTION STATE:
9 67 24 25 368 36 1 78 45
134 34 8 7 59 1259 45 29 6
67 5 12 269 4 18 78 3 29
78 2 349 34 1 67 68 5 349
134 349 6 8 35 235 24 129 7
5 78 134 234 679 69 36 18 234
34 349 7 1 3569 3569 25 26 8
68 1 359 3569 2 78 379 4 35
2 68 359 359 78 4 39 67 1
At this point, a single bivalue-chain-rc[3] - an xy-chain[3] - solves the puzzle:
- Code: Select all
biv-chain-rc[3]: r1c4{n2 n5} - r2c5{n5 n9} - r2c8{n9 n2} ==> r2c6 ≠ 2
stte