.
1) Simplest-first solution, with no step harder than 5, displaying what the puzzle was obviously designed for, i.e. a lot of Subsets (19)***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
*** Download from:
https://github.com/denis-berthier/CSP-Rules-V2.1***********************************************************************************************
Starting RESOLUTION STATE:
- Code: Select all
1234567 1347 124567 12345 12379 123579 124689 12389 12469
123456 134 9 8 123 1235 1246 123 7
12347 8 1247 1234 6 12379 1249 5 1249
12789 6 127 123 5 12378 129 4 129
12457 147 3 9 127 1267 1256 127 8
125789 179 1257 126 1278 4 3 1279 12569
1379 5 17 123 4 12389 1289 6 129
1469 2 8 7 19 1569 1459 19 3
13469 1349 146 12356 12389 1235689 7 1289 12459
246 candidates, 1887 csp-links and 1887 links. Density = 6.26%
naked-pairs-in-a-row: r8{c5 c8}{n1 n9} ==> r8c7 ≠ 9, r8c7 ≠ 1, r8c6 ≠ 9, r8c6 ≠ 1, r8c1 ≠ 9, r8c1 ≠ 1
hidden-pairs-in-a-block: b9{n4 n5}{r8c7 r9c9} ==> r9c9 ≠ 9, r9c9 ≠ 2, r9c9 ≠ 1
hidden-pairs-in-a-block: b6{n5 n6}{r5c7 r6c9} ==> r6c9 ≠ 9, r6c9 ≠ 2, r6c9 ≠ 1, r5c7 ≠ 2, r5c7 ≠ 1
finned-x-wing-in-rows: n4{r8 r2}{c7 c1} ==> r3c1 ≠ 4, r1c1 ≠ 4
swordfish-in-columns: n4{c3 c4 c9}{r9 r3 r1} ==> r9c2 ≠ 4, r9c1 ≠ 4, r3c7 ≠ 4, r1c7 ≠ 4, r1c2 ≠ 4
swordfish-in-columns: n5{c3 c4 c9}{r6 r1 r9} ==> r9c6 ≠ 5, r6c1 ≠ 5, r1c6 ≠ 5, r1c1 ≠ 5
swordfish-in-columns: n7{c2 c5 c8}{r6 r1 r5} ==> r6c3 ≠ 7, r6c1 ≠ 7, r5c6 ≠ 7, r5c1 ≠ 7, r1c6 ≠ 7, r1c3 ≠ 7, r1c1 ≠ 7
swordfish-in-rows: n3{r3 r4 r7}{c1 c6 c4} ==> r9c6 ≠ 3, r9c4 ≠ 3, r9c1 ≠ 3, r2c6 ≠ 3, r2c1 ≠ 3, r1c6 ≠ 3, r1c4 ≠ 3, r1c1 ≠ 3
swordfish-in-rows: n6{r2 r5 r8}{c1 c7 c6} ==> r9c6 ≠ 6, r9c1 ≠ 6, r1c7 ≠ 6, r1c1 ≠ 6
hidden-pairs-in-a-block: b1{n5 n6}{r1c3 r2c1} ==> r2c1 ≠ 4, r2c1 ≠ 2, r2c1 ≠ 1, r1c3 ≠ 4, r1c3 ≠ 2, r1c3 ≠ 1
hidden-pairs-in-a-block: b7{n4 n6}{r8c1 r9c3} ==> r9c3 ≠ 1
hidden-pairs-in-a-block: b8{n5 n6}{r8c6 r9c4} ==> r9c4 ≠ 2, r9c4 ≠ 1
hidden-triplets-in-a-column: c1{n4 n5 n6}{r8 r5 r2} ==> r5c1 ≠ 2, r5c1 ≠ 1
hidden-triplets-in-a-row: r1{n4 n5 n6}{c9 c4 c3} ==> r1c9 ≠ 9, r1c9 ≠ 2, r1c9 ≠ 1, r1c4 ≠ 2, r1c4 ≠ 1
naked-triplets-in-a-column: c9{r1 r6 r9}{n4 n6 n5} ==> r3c9 ≠ 4
hidden-pairs-in-a-block: b3{n4 n6}{r1c9 r2c7} ==> r2c7 ≠ 2, r2c7 ≠ 1
swordfish-in-rows: n2{r2 r5 r9}{c8 c6 c5} ==> r7c6 ≠ 2, r6c8 ≠ 2, r6c5 ≠ 2, r4c6 ≠ 2, r3c6 ≠ 2, r1c8 ≠ 2, r1c6 ≠ 2, r1c5 ≠ 2
biv-chain[4]: r4n8{c1 c6} - c5n8{r6 r9} - r9n3{c5 c2} - c2n9{r9 r6} ==> r4c1 ≠ 9
whip[1]: r4n9{c9 .} ==> r6c8 ≠ 9
z-chain[5]: r6n5{c3 c9} - r6n6{c9 c4} - r6n2{c4 c1} - r4c3{n2 n7} - r7c3{n7 .} ==> r6c3 ≠ 1
finned-swordfish-in-columns: n1{c3 c9 c4}{r3 r7 r4} ==> r4c6 ≠ 1
t-whip[5]: c8n9{r9 r1} - r3n9{c9 c6} - c6n7{r3 r4} - c6n3{r4 r7} - r7n8{c6 .} ==> r7c7 ≠ 9
t-whip[5]: r4n3{c4 c6} - r4n8{c6 c1} - r4n7{c1 c3} - r7n7{c3 c1} - r7n3{c1 .} ==> r3c4 ≠ 3
z-chain[4]: r3n3{c1 c6} - r3n7{c6 c3} - r7n7{c3 c1} - c1n3{r7 .} ==> r3c1 ≠ 2
z-chain[4]: r3n3{c1 c6} - r3n7{c6 c3} - r7n7{c3 c1} - c1n3{r7 .} ==> r3c1 ≠ 1
t-whip[4]: r3n9{c9 c6} - b2n7{r3c6 r1c5} - b2n3{r1c5 r2c5} - c8n3{r2 .} ==> r1c8 ≠ 9
whip[1]: c8n9{r9 .} ==> r7c9 ≠ 9
biv-chain[3]: r8c5{n1 n9} - b9n9{r8c8 r9c8} - r9c1{n9 n1} ==> r9c5 ≠ 1, r9c6 ≠ 1
biv-chain[3]: r9c1{n1 n9} - r7n9{c1 c6} - r1c6{n9 n1} ==> r1c1 ≠ 1
naked-single ==> r1c1 = 2
hidden-triplets-in-a-row: r6{n2 n5 n6}{c4 c3 c9} ==> r6c4 ≠ 1
swordfish-in-columns: n1{c3 c4 c9}{r3 r4 r7} ==> r7c7 ≠ 1, r7c6 ≠ 1, r7c1 ≠ 1, r4c7 ≠ 1, r4c1 ≠ 1, r3c7 ≠ 1, r3c6 ≠ 1
stte
2) Single-step solution:FORCING{3}-T&E(W1) applied to trivalue candidates n3r1c5, n3r2c5 and n3r9c5 :
===> 1 values decided in the three cases: n2r7c9
===> 118 candidates eliminated in the three cases: n3r1c1 n4r1c1 n6r1c1 n7r1c1 n1r1c2 n4r1c2 n1r1c3 n2r1c3 n4r1c3 n7r1c3 n1r1c4 n2r1c4 n3r1c4 n1r1c5 n2r1c5 n1r1c6 n2r1c6 n3r1c6 n5r1c6 n7r1c6 n4r1c7 n6r1c7 n9r1c7 n1r1c8 n2r1c8 n9r1c8 n1r1c9 n2r1c9 n9r1c9 n1r2c1 n2r2c1 n3r2c1 n3r2c2 n1r2c5 n3r2c6 n2r2c7 n4r2c7 n1r2c8 n2r2c8 n1r3c1 n2r3c1 n4r3c1 n4r3c3 n7r3c3 n2r3c4 n3r3c4 n1r3c6 n2r3c6 n9r3c6 n1r3c7 n1r3c9 n2r3c9 n1r4c1 n2r4c1 n9r4c1 n1r4c3 n1r4c4 n2r4c4 n1r4c6 n2r4c6 n1r4c7 n2r4c9 n1r5c1 n7r5c1 n7r5c2 n2r5c5 n1r5c6 n7r5c6 n1r5c7 n2r5c7 n2r6c1 n5r6c1 n7r6c1 n1r6c2 n2r6c3 n7r6c3 n1r6c4 n2r6c5 n7r6c5 n1r6c8 n9r6c8 n1r6c9 n2r6c9 n9r6c9 n1r7c1 n2r7c4 n2r7c6 n9r7c6 n1r7c7 n2r7c7 n9r7c7 n1r7c9 n9r7c9 n1r8c1 n9r8c1 n1r8c6 n9r8c6 n1r8c7 n9r8c7 n3r9c1 n4r9c1 n6r9c1 n4r9c2 n9r9c2 n1r9c3 n1r9c4 n3r9c4 n5r9c4 n1r9c5 n9r9c5 n1r9c6 n3r9c6 n5r9c6 n9r9c6 n1r9c8 n2r9c8 n2r9c9 n9r9c9
stte